
Security Audit Report

Mezo:
Portal Smart Contracts

Final Audit Report: March 14, 2024

defense@thesis.co

mailto:defense@thesis.co

Table of Contents

About Thesis Defense...3
Scope... 3

Overview..3
Project Team... 3
Schedule..3
Code...4
Project Documentation.. 4

Findings...4
Threat Model...4
Security by Design.. 5
Secure Implementation... 5
Use of Dependencies... 5
Tests.. 5
Project Documentation.. 5

Issues and Suggestions... 6

Issues..7
Issue A: BitcoinDepositor Might Fail to Finalize Some Deposits.....................................7
Issue B: Optimistic Pause of Bridge (Out-of-Scope)..8
Issue C: Lack of a Two-Step Process for Ownership Change..9

Suggestions...9
Suggestion 1: Update Code Comments to Reflect the Implementation........................9
Suggestion 2: Check the Sanity of Lock Interval Parameters When Setting
minLockPeriod and maxLockPeriod... 10
Suggestion 3: Prevent Adding a Supported Token With None Ability.......................... 10
Suggestion 4: Use latest Open Zeppelin Library Implementation............................... 11
Suggestion 5: Pin and Lock Pragma..11
Suggestion 6: Implement 0 Address Check...11
Suggestion 7: Prevent Resetting the depositInfo.unlockAt.. 12
Suggestion 8: Check For Equality When Setting minLockPeriod and maxLockPeriod....
12

Thesis Defense Security Audit Report 2

About Thesis Defense
Thesis Defense serves as the auditing services arm within Thesis, Inc., the venture studio
behind tBTC, Fold, Taho, Etcher, and Embody. Our team of senior security and cryptography
auditors has extensive security experience in the decentralized technology space. In addition,
the Thesis Defense team has a demonstrated track record in a variety of languages and
technologies, including, but not limited to, smart contracts, cryptographic protocols including
zk-cryptography, dApps including wallets and browser extensions, and bridges. Thesis Defense
has extensive experience conducting security audits across a number of ecosystems, including,
but not limited to, Ethereum, Zcash, Stacks, Mina, Polygon, Filecoin, and Bitcoin.

Thesis Defense will employ the Thesis Defense Audit Approach and Audit Process to the above
in-scope service. In the event that certain processes and methodologies are not applicable to
the aforementioned in-scope services, we will indicate as such in individual audit or design
review SOWs. In addition, Thesis Defense provides clear guidance on successful Security Audit
Preparation.

Scope
Overview

Thesis Defense conducted a manual code review of Mezo’s Portal Smart Contracts
implementation.

Project Team

● Ahmad Jawid Jamiulahmadi, Senior Security Auditor
● Mukesh Jaiswal, Security Auditor
● Bashir Abu-Amr, Senior Technical Writer

Schedule

● Code Review:March 4 - 8, 2024
● Audit Report Delivery:March 8, 2024
● Final Report Delivery:March 14, 2024

Code

● Mezo Portal

Thesis Defense Security Audit Report 3

https://thesis.co/defense
https://thesis.co/defense#team
https://thesis.co/blog/thesis-defense-security-audit-approach/
https://thesis.co/blog/security-audit-process:-what-to-expect-when-you%E2%80%99re-getting-a-thesis-defense-security-audit/
https://thesis.co/blog/maximizing-security-audit-success:-a-comprehensive-guide-to-audit-project-preparation/
https://thesis.co/blog/maximizing-security-audit-success:-a-comprehensive-guide-to-audit-project-preparation/

○ Repository: https://github.com/thesis/mezo-portal/tree/main/solidity
○ Branch: main
○ Hash: 39a312c36a9e1abd5a7f3d982fad2b5ed452c8eb
○ Files: Portal.sol, BitcoinDepositor.sol

● tBTC v2
○ Repository: https://github.com/keep-network/tbtc-v2/tree/main
○ Branch: main
○ Hash: 9e047d11703415e1a1844a64b4985a181570fcdd
○ Files: AbstractTBTCDepositor.sol

● Mezo Portal Verification Commit
○ Repository:

https://github.com/thesis/mezo-portal/releases/tag/solidity%2Fv0.1.0
○ Branch: ‘solidity/v0.1.0’
○ Hash: 0000ff5c322edeb69b18072c7cd2455b8afc8bf2

Project Documentation

● Mezo Security Audit Document:
https://coda.io/d/Mezo_d_vIDNPK008/Internal-security-audit_suQky#_lu8y4

● Mezo Release 1 Specification Document:
https://coda.io/d/Mezo_d_vIDNPK008/Release-1-Stoker_suYGz#_luPrn

● tBTC Repository Documentation:
https://github.com/keep-network/tbtc-v2/blob/main/docs/rfc/rfc-11.adoc#22-implem
entation

Findings
The Mezo Portal smart contracts are intended to allow BTC and tBTC holders to deposit and
lock tokens in order to earn points. These points will be to determine airdrops from the Mezo
Blockchain mainnet. The smart contracts are intended to be integrated with a frontend
interface and the tBTC bridge, which were considered out of scope for this audit.

Threat Model

For this review, our team considered a threat model whereby the smart contracts assume all
external components as untrusted. For those components that are out of scope for this review,
we considered the components to be untrusted, but functioning as intended. The Mezo Portal
smart contracts are designed to be integrated with the tBTC v2 bridge. We assumed to tBTC the
bridge behaves as expected. The smart contracts are designed to be integrated with a user

Thesis Defense Security Audit Report 4

https://github.com/thesis/mezo-portal/tree/main/solidity
https://github.com/keep-network/tbtc-v2/tree/main
https://github.com/thesis/mezo-portal/releases/tag/solidity%2Fv0.1.0
https://coda.io/d/Mezo_d_vIDNPK008/Internal-security-audit_suQky#_lu8y4
https://coda.io/d/Mezo_d_vIDNPK008/Release-1-Stoker_suYGz#_luPrn
https://github.com/keep-network/tbtc-v2/blob/main/docs/rfc/rfc-11.adoc#22-implementation
https://github.com/keep-network/tbtc-v2/blob/main/docs/rfc/rfc-11.adoc#22-implementation

interface which we considered untrusted. Furthermore, we assume that the governance of the
Portal Smart Contracts is sufficiently decentralized and not malicious.

Security by Design

We identified issues in some design elements of the smart contracts. We found that the
BitcoinDepositor smart contract does not check that the user selected locking period
specified in the extra data section of the Bitcoin script is in range, which could make the user
unable to withdraw their tokens from the protocol (Issue A). We recommend a solution in the
smart contract.

We also found that the smart contracts do not implement a 2-step process for transferring the
smart contract ownership address (Issue C).

In looking at the out-of-scope tBTC bridge implementation, to have a more precise
understanding of the smart contracts in scope, we discovered an unlikely but possible
condition in the tBTC bridge where users would be unable to make deposits. We recommend
that the user interface alert users of the current status of the bridge (Issue B).

In our audit, our team also noted a lock period entered as non-integer weeks (4.5 or 5.5
weeks), the deposit interval is rounded down. Although this is intended behavior, we
recommend clarifying this to the users.

Secure Implementation

We conducted an in-depth examination and manual review of the files in scope and found them
implemented in adherence to best practices.

Use of Dependencies

The project uses an OpenZeppelin library whose version is not the most recent. We
recommend using the most recent version that includes up to date security fixes. (Suggestion
4).

Tests

There is sufficient testing implemented, which covers most of the functionality of the Portal
and BitcoinDepositor smart contracts.

Project Documentation

The files are well commented and adhering to NatSpec, but there are some instances of code
comments that should be updated to reflect the implementation more accurately (Suggestion
1).

Thesis Defense Security Audit Report 5

Issues and Suggestions

Issues Status

Issue A: BitcoinDepositor Might Fail to Finalize Some Deposits Reported

Issue B: Optimistic Pause of Bridge (Out-of-Scope) Reported

Issue C: Lack of a Two-Step Process for Ownership Change Fixed

Suggestions Status

Suggestion 1: Update Code Comments to Reflect the Implementation Fixed

Suggestion 2: Check the Sanity of Lock Interval Parameters When Setting
MinLockPeriod and MaxLockPeriod

Fixed

Suggestion 3: Prevent Adding a Supported Token With None Ability Fixed

Suggestion 4: Use latest Open Zeppelin Library Implementation Fixed

Suggestion 5: Pin and Lock Pragma Fixed

Suggestion 6: Implement 0 Address Check Fixed

Suggestion 7: Prevent Resetting the depositInfo.unlockAt Fixed

Suggestion 8: Check For Equality When Setting minLockPeriod and
maxLockPeriod

Fixed

Thesis Defense Security Audit Report 6

Issues
Issue A: BitcoinDepositor Might Fail to Finalize Some Deposits

Location
BitcoinDepositor.sol#L258-L263
BitcoinDepositor.sol#L258-L263
BitcoinDepositor.sol#L258-L263

Description
The finalizeDeposit function in the BitcoinDepositor smart contract finalizes tBTC
deposits revealed to the tBTC bridge, and deposits them on behalf of the actual depositor to
the Portal smart contract. The Bitcoin transaction token, which is a P2(W)SH Bitcoin script,
includes the deposit owner address and deposit lock time in seconds in the
depositor-extra-data section of the token.
Deposits made to the Portal smart contract can be locked for a user specified period which
must be into a specific range i.e., more than minLockPeriod and less than maxLockPeriod.
Deposits with a locking period less than the current minimum locking period and more than the
current maximum locking period will be disallowed and the transaction will be reverted.
Therefore, if the locking period specified in the depositor-extra-data section in the
P2(W)SH Bitcoin script, is not in the specific range, the BitcoinDepositor smart contract
will not be able to finalize the deposit in the finalizeDeposit function since the transaction
is reverted due to a call to the depositFor function in the Portal smart contract which
prevents deposits with a lockingPeriod less than the current minimum locking period or
more than the current maximum locking period if the lockingPeriod is not zero.

Impact
Since the finalizeDeposit function in the BitcoinDepositor smart contract is always
reverted due to the incorrect locking period, the user’s deposit will be stuck in the
BitcoinDepositor smart contract.

Remediation
Resolving this issue requires careful consideration of potential security risks and complexity
that can be introduced with a specific solution. However, we can recommend the following
solutions:
Before sending the depositFor transaction to the Portal smart contract, in the
finalizeDeposit function in the BitcoinDepositor smart contract, check if the
lockingPeriod provided is within the range of minimum locking period and maximum
locking period, and if not:

Thesis Defense Security Audit Report 7

https://github.com/thesis/mezo-portal/blob/39a312c36a9e1abd5a7f3d982fad2b5ed452c8eb/solidity/contracts/BitcoinDepositor.sol#L258-L263
https://github.com/thesis/mezo-portal/blob/39a312c36a9e1abd5a7f3d982fad2b5ed452c8eb/solidity/contracts/BitcoinDepositor.sol#L258-L263
https://github.com/thesis/mezo-portal/blob/39a312c36a9e1abd5a7f3d982fad2b5ed452c8eb/solidity/contracts/BitcoinDepositor.sol#L258-L263

1. Transfer the minted tBTC tokens directly to the deposit owner, or
2. Deposit tokens to the Portal smart contract without locking them (deposit with zero

locking period), or
3. Deposit tokens to the Portal smart contract with the current maximum or minimum

locking period.

Verification Status
Reported and unresolved. This issue can be mitigated in the Mezo interface dApp, which was
out of scope for this security audit.

Issue B: Optimistic Pause of Bridge (Out-of-Scope)

Location
contracts/BitcoinDepositor.sol#L183

Description
The tBTC bridge handles user deposits through optimistic minting and sweeping. Optimistic
minting allows the minting of tBTC prior to the TBTCVault receiving the Bank smart contract
balance. Two permissioned sets, Minters and Guardians, operate in a 1-of-n mode. Minters
monitor revealed deposits and can request the minting of tBTC, with any single Minter capable
of initiating this action. A delay, known as "optimisticMintingDelay," occurs between the
Minter's request and the actual minting of tBTC. Within this delay period, any Guardian has the
authority to cancel the minting process.

In Sweeping the bridge active wallet periodically signs a transaction that unlocks all
of the valid, revealed deposits above the dust threshold, combines them into a single UTXO,
and the balances of depositors in the Bank smart contract are increased when the Simple
Payment Verification sweep proof is submitted to the bridge.

As a result, there are conditions when tBTC minting is not allowed:

1. When the optimistic minting is paused, Minters will not be able to put in a request for an
optimistic minting of tBTC

2. When the wallet is in the state “MovingFunds”. At this point, the wallet is expected to
move outstanding funds to another wallet. The wallet can still fulfill pending
redemption requests, although new redemption requests and new deposit reveals are
not accepted.

Thesis Defense Security Audit Report 8

https://github.com/thesis/mezo-portal/blob/9aa1acb6b97068ff963962c192de057901e0bbc4/solidity/contracts/BitcoinDepositor.sol#L183

As a result, when optimistic minting is paused and the wallet is in the state “MovingFunds”,
the user will not be able to reveal their deposited BTC to the BitcoinDepositor smart
contract.

Impact
While the likelihood of such a situation occurring is minimal, it is still possible. If it does
happen, users will have the option to claim their deposited BTC after the expiration of the lock
time interval. This effectively renders the user's assets inaccessible for the duration of the lock
period, and the user is unable to earn points.

Mitigation
We recommend that users are alerted in the interface about the paused status of the bridge
and wallet status before allowing any deposit transactions.

Verification Status
Reported and unresolved. The Mezo team stated that the Mezo interface dApp will restrict
deposits when the tBTC bridge is in optimistic pause mode.

Issue C: Lack of a Two-Step Process for Ownership Change [Fixed]

Location
Portal.sol#L9

Description
The Portal smart contract uses OpenZeppelin’s OwnableUpgradeable library for the
transfer of ownership of a smart contract from one owner address to another. This library does
not implement a two-step ownership transfer.

Impact
A two-step process for ownership transfer significantly reduces the probability of incorrectly
transferring ownership of a smart contract which would result in the permanent loss of control
of the smart contract.

Remediation
We recommend implementing a Two-Step process for ownership change. We recommend
using OpenZeppelin’s Ownable2StepUpgradeable library for this purpose.

Verification Status
Fixed.

Thesis Defense Security Audit Report 9

https://github.com/thesis/mezo-portal/blob/39a312c36a9e1abd5a7f3d982fad2b5ed452c8eb/solidity/contracts/Portal.sol#L9
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/master/contracts/access/Ownable2StepUpgradeable.sol

Suggestions
Suggestion 1: Update Code Comments to Reflect the Implementation [Fixed]

Location
Portal.sol#L305
Portal.sol#L315

Description
There are comprehensive code comments in the smart contracts that adhere to NatSpec
guidelines. However, our team found instances of an inaccurate code comment

Remediation
We recommend updating the referenced code comments.

Verification Status
Fixed.

Suggestion 2: Check the Sanity of Lock Interval Parameters When Setting
minLockPeriod and maxLockPeriod [Fixed]

Location
Portal.sol#L171-L182
Portal.sol#L189-L200

Description
The setMinLockPeriod and setMaxLockPeriod functions in the Portal smart contract do
not check if the newly set locking period is normalized to weeks. Additionally, the
setMinLockPeriod function currently lacks appropriate input validation for a minimum lock
period of one week. The absence of a check allows the lock duration interval to be set to values
that are not normalized.
Without input validation, the minimum lock period can be set to any value that is less than 1
week, which is not consistent with the intended functionality and could lead to unexpected
outcomes.

Thesis Defense Security Audit Report 10

https://github.com/thesis/mezo-portal/blob/39a312c36a9e1abd5a7f3d982fad2b5ed452c8eb/solidity/contracts/Portal.sol#L305
https://github.com/thesis/mezo-portal/blob/39a312c36a9e1abd5a7f3d982fad2b5ed452c8eb/solidity/contracts/Portal.sol#L315
https://github.com/thesis/mezo-portal/blob/39a312c36a9e1abd5a7f3d982fad2b5ed452c8eb/solidity/contracts/Portal.sol#L171-L182
https://github.com/thesis/mezo-portal/blob/39a312c36a9e1abd5a7f3d982fad2b5ed452c8eb/solidity/contracts/Portal.sol#L189-L200

Remediation
We recommend that the locking periods supplied in the aforementioned functions are checked
for normalization. We also recommend implementing a sanity check on the minimum lock
duration parameter to enforce the minimum one-week lock interval.

Verification Status
Fixed.

Suggestion 3: Prevent Adding a Supported Token With None Ability [Fixed]

Location
Portal.sol#L149-L166

Description
The addSupportedToken function in the Portal smart contract is used to add a new token
to the list of supported tokens. A new supported token should be added with a token ability of
Deposit or DepositAndLock. However, this function allows adding a supported token with
the None token ability.

Remediation
We recommend adding to a check to prevent adding a supported token with the None token
ability.

Verification Status
Fixed.

Suggestion 4: Use latest Open Zeppelin Library Implementation [Fixed]

Location
package.json#L48

Description
The current version of the smart contracts relies on a prior release of the OpenZeppelin library,
wherein an issue with Base64 encoding exists. While this problem does not currently impact
the functionality of the Portal smart contracts, upgrading the library helps the contract
mitigates potential security issues related to the known issue as the project evolves over time

Remediation
We recommend that an upgrade be made to the Open Zeppelin library version to 5.0.2

Thesis Defense Security Audit Report 11

https://github.com/thesis/mezo-portal/blob/39a312c36a9e1abd5a7f3d982fad2b5ed452c8eb/solidity/contracts/Portal.sol#L149-L166
https://github.com/thesis/mezo-portal/blob/39a312c36a9e1abd5a7f3d982fad2b5ed452c8eb/solidity/package.json#L48
https://github.com/OpenZeppelin/openzeppelin-contracts/security/advisories/GHSA-9vx6-7xxf-x967

Verification Status
Fixed.

Suggestion 5: Pin and Lock Pragma [Fixed]

Description
When using the pragma directive in Solidity, it is essential to specify the exact version of the
Solidity compiler that your smart contract is compatible with. This practice, known as locking
the pragma, ensures that your contract is compiled and executed as intended, avoiding
potential issues caused by compiler version differences.

Remediation
We recommend specifying the most recent, exact version of the Solidity compiler.

Verification Status
Fixed.

Suggestion 6: Implement 0 Address Check [Fixed]

Location
Portal.sol#L380

Description
In the location referenced above, a zero address check is missing validating the correctness
depositOwner address, thereby preventing an incorrectly set value. Zero address checks are
essential when an address is the receiver of a token or value.

Remediation
We recommend adding a zero address check for depositOwner in the _depositFor
function.

Verification Status
Fixed.

Suggestion 7: Prevent Resetting the depositInfo.unlockAt [Fixed]

Location
Portal.sol#L361-L369

Thesis Defense Security Audit Report 12

https://github.com/thesis/mezo-portal/blob/39a312c36a9e1abd5a7f3d982fad2b5ed452c8eb/solidity/contracts/Portal.sol#L380
https://github.com/thesis/mezo-portal/blob/39a312c36a9e1abd5a7f3d982fad2b5ed452c8eb/solidity/contracts/Portal.sol#L361-L369

Description
The referenced if condition in the lock function inside the Portal smart contract does not
revert if the newly provided unlocking time is the current unlocking time hence resetting it with
the same value.

Remediation
We recommend preventing the resetting of the depositInfo.unlockAt by adding an
equality check in the revert condition referenced above.

Verification Status
Fixed.

Suggestion 8: Check For Equality When Setting minLockPeriod and
maxLockPeriod [Fixed]

Location
Portal.sol#L171-L178
Portal.sol#L190-L196

Description
When setting minLockPeriod and maxLockPeriod in the setMinLockPeriod and
setMaxLockPeriod functions respectively in the Portal smart contract, minLockPeriod
can be set to maxLockPeriod and vice versa since the referenced revert conditions in both
functions don’t check for equality of minLockPeriod and maxLockPeriod to revert
consequently. This might result in unexpected behavior.

Remediation
We recommend that a check for equality in the referenced functions be also implemented to
prevent unexpected behavior.

Verification Status
Fixed.

Thesis Defense Security Audit Report 13

https://github.com/thesis/mezo-portal/blob/39a312c36a9e1abd5a7f3d982fad2b5ed452c8eb/solidity/contracts/Portal.sol#L171-L178
https://github.com/thesis/mezo-portal/blob/39a312c36a9e1abd5a7f3d982fad2b5ed452c8eb/solidity/contracts/Portal.sol#L190-L196

