
Mezo Portal

Executive Summary
This audit report was prepared by Quantstamp, the leader in blockchain security.

Type Bitcoin Bridge

Timeline 2024-04-29 through 2024-05-03

Language Solidity

Methods
Architecture Review, Unit Testing, Functional
Testing, Computer-Aided Verification, Manual
Review

Specification
RFC: OrangeKit Bitcoin Account Metaprotocol

Source Code

thesis/mezo-portal #0000ff5
https://github.com/keep-network/tbtc-v2

#9e047d1
https://github.com/thesis/orangekit

#44355ad

Auditors
Cameron Biniamow Auditing Engineer

Shih-Hung Wang Auditing Engineer

Rabib Islam Auditing Engineer

Documentation quality High

Test quality High

Total Findings
10

Fixed: 3 Acknowledged: 7

High severity findings 0

Medium severity findings 1 Fixed: 1

Low severity findings 2 Acknowledged: 2

Undetermined severity
findings

0

Informational findings 7 Fixed: 2 Acknowledged: 5

Summary of Findings
Mezo is a project focused on developing an "economic layer" for Bitcoin. The current audit report is concerning a Points Portal where users can
deposit BTC to earn points.

In order to participate in Mezo Portal, users are to deposit BTC on the Bitcoin network to an address determined by a script and its particular
inputs. Following that, a process can be initiated that will result in TBTC being deposited into the Portal contract for a user-determined,
protocol-constrained, pre-specified lock period.

During this audit, we found an issue which results in a loss of security for the ECDSA being used to validate Bitcoin signed messages that enable
the use of an admin function.

Overall, the code quality was quite good. We do recommend, however, updating the test suite in order to ensure that all tests are passing.

Update: The issues have been addressed.

ID DESCRIPTION SEVERITY STATUS

MEZO-1
Potential Signature Forgery Due to Lack of Validation on Public
Keys • Medium Fixed

MEZO-2 Late Lock Period Validation May Lead to Stuck Funds • Low Acknowledged

MEZO-3 Incompatible with Deflationary and Fee-on-Transfer Tokens • Low Acknowledged

MEZO-4 PUSH0 Remains Unsupported on some Blockchains • Informational Acknowledged

https://quantstamp.com/
https://github.com/thesis/orangekit/blob/main/rfc/rfc.md
https://github.com/thesis/mezo-portal
https://github.com/thesis/mezo-portal/commit/0000ff5c322edeb69b18072c7cd2455b8afc8bf2
https://github.com/keep-network/tbtc-v2
https://github.com/keep-network/tbtc-v2/commit/9e047d11703415e1a1844a64b4985a181570fcdd
https://github.com/thesis/orangekit
https://github.com/thesis/orangekit/commit/44355ad8dbac7df34d069fca2720c9e3f96b0ff9

ID DESCRIPTION SEVERITY STATUS

MEZO-5 Inconsistent Event Emission • Informational Acknowledged

MEZO-6 Gas Savings • Informational Acknowledged

MEZO-7 Unmasked Result of Create2 Address Calculation • Informational Fixed

MEZO-8 ECDSA Signature Malleability • Informational Fixed

MEZO-9 Potential Incompatibility with ERC-4337 • Informational Acknowledged

MEZO-10 Privileged Roles and Ownership • Informational Acknowledged

Assessment Breakdown
Quantstamp's objective was to evaluate the repository for security-related issues, code quality, and adherence to specification and best
practices.

Disclaimer
Only features that are contained within the repositories at the commit hashes specified on the front page of the report are within the
scope of the audit and fix review. All features added in future revisions of the code are excluded from consideration in this report.

Possible issues we looked for included (but are not limited to):

Transaction-ordering dependence
Timestamp dependence
Mishandled exceptions and call stack limits
Unsafe external calls
Integer overflow / underflow
Number rounding errors
Reentrancy and cross-function vulnerabilities
Denial of service / logical oversights
Access control
Centralization of power
Business logic contradicting the specification
Code clones, functionality duplication
Gas usage
Arbitrary token minting

Methodology

1. Code review that includes the following
1. Review of the specifications, sources, and instructions provided to Quantstamp to make sure we understand the size, scope, and

functionality of the smart contract.
2. Manual review of code, which is the process of reading source code line-by-line in an attempt to identify potential vulnerabilities.
3. Comparison to specification, which is the process of checking whether the code does what the specifications, sources, and instructions

provided to Quantstamp describe.
2. Testing and automated analysis that includes the following:

1. Test coverage analysis, which is the process of determining whether the test cases are actually covering the code and how much code is
exercised when we run those test cases.

2. Symbolic execution, which is analyzing a program to determine what inputs cause each part of a program to execute.
3. Best practices review, which is a review of the smart contracts to improve efficiency, effectiveness, clarity, maintainability, security, and

control based on the established industry and academic practices, recommendations, and research.
4. Specific, itemized, and actionable recommendations to help you take steps to secure your smart contracts.

Scope
Files Included

Scope for thesis/mezo-portal

solidity/contracts/BitcoinDepositor.sol
solidity/contracts/Portal.sol

Scope for keep-network/tbtc-v2

solidity/contracts/integrator/AbstractTBTCDepositor.sol

Scope for thesis/orangekit
solidity/contracts/*

Findings
MEZO-1
Potential Signature Forgery Due to Lack of Validation on Public
Keys

• Medium Fixed

Update
Marked as "Fixed" by the client.
Addressed in: 51985d2 .

A function isOnCurve() is now being used to determine whether a point is on the curve. Although the fix appears to be sufficient, an
extra level of assurance may be provided by validating that x and y are both below SECP256K1_P

File(s) affected: BitcoinSafeOwner.sol

Description: The validateCompressedP2PKH() function defined in BitcoinSafeOwner is susceptible to a hash collision attack
(specifically, a birthday attack), where an adversary may try to brute-force different y and s values to forge a valid signature if the x value
for calculating the truncatedBitcoinAddress is known. The collision attack would reduce the bits of security level from 160 to 81 bits,
making the attack practical for well-capitalized attackers. The validateP2SH_P2WPKH() and validateP2WPKH() functions have the same
issue.

Ultimately, this may lead to a situation where the singleton is upgraded to a malicious contract.

Exploit Scenario: We demonstrate the details of the attack as follows. Given a known truncatedBitcoinAddress , derived by a compressed
public key (x, y) , our goal is to find some y' , v , r , s such that ecrecover(signedMessage, v, r, s) ==
publicKeyToEthereumAddress(x, y') for our chosen signedMessage . If so, we successfully forge a signature for signedMessage .

First, we randomly select 2^80 y' values whose last bit is the same as y . We calculate publicKeyToEthereumAddress(x, y') for each
y' and collect the results (which are random addresses) to a set, A . Since y and y' have the same last bit, the derived
truncatedBitcoinAddress remains the same.

Next, we set v = 27 and r to an arbitrary constant, e.g., bytes32(1) . We randomly select 2^80 s values within the range of [1, n -
1] , where n is the order of the secp256k1 group. We calculate ecrecover(signedMessage, v, r, s) for each s and collect the results
(also random addresses) to another set, B . Note that for any s in the specified range, ecrecover() should be able to recover a signer
successfully with a negligible probability of failure, following the public key recovery process.

We compare the two sets, A and B . If any address in set A is also in B , we successfully achieve our goal. Given that the total number of
addresses is 2^160 , since we have 2^80 uniformly sampled addresses in both sets A and B , we may find a collision with a reasonable
probability, which is about 1 - 1/e = 0.63 .

Recommendation: When validating signatures for addresses derived from a compressed public key, consider adding a check to ensure that the
provided (x, y) is a valid point on the secp256k1 curve. This would ensure the uniqueness of the y value for a given
truncatedBitcoinAddress . Therefore, the above attack technique would become invalid.

MEZO-2 Late Lock Period Validation May Lead to Stuck Funds • Low Acknowledged

Update
Marked as "Acknowledged" by the client.
The client provided the following explanation:

In the BTC deposit flow, the user needs to assemble the P2WSH address and the lock period is a part of
the script. This is quite a complicated action and users are not doing it manually. This happens in the
dApp and is implemented in the tBTC SDK: https://github.com/keep-network/tbtc-v2/tree/main/typescript.
In the context of the audit, we assume this code works correctly because if not, much worse things can
happen like, for example, sending tBTC to some arbitrary address without the P2WSH deposit script
encoded at all. If we assume the code of tBTC SDK works correctly, there is still one scenario when
MEZO-2 can happen: it's when the allowed lock time range changed between the time P2WSH script was
assembled and the deposit was revealed and finalized. But for this to happen, the governance must
execute an update that will cause this problem. I assume that if the need for such an upgrade arises,

https://en.wikipedia.org/wiki/Birthday_attack
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm

the governance will execute it in a responsible way, like updating the allowed range in the dApp before
changing it on the contract side and making sure there are no deposits in the queue that would violate
the rules.

File(s) affected: BitcoinDepositor.sol , Portal.sol

Description: In the flow for BitcoinDepositor.finalizeDeposit() , the function Portal._calculateUnlockTime() is called, and the
validation at Portal.sol#L461-467 , which checks whether lockPeriod is within a fixed range, may cause the transaction to revert.
However, in the context of the protocol, this would be occurring after the deposit is revealed and after TBTC is already minted to the
BitcoinDepositor contract. Moreover, there is no means implemented to recover this minted TBTC from the BitcoinDepositor .

Recommendation: Consider validating the lockPeriod in the flow for BitcoinDepositor.initializeDeposit() in order to avoid
reversion of finalizeDeposit() .

MEZO-3
Incompatible with Deflationary and Fee-on-Transfer Tokens

• Low Acknowledged

Update
Marked as "Acknowledged" by the client.
Addressed in: 347c04a .
The client provided the following explanation:

We do not plan to work with deflationary or fee-on-transfer tokens. We added a warning about it and we
will make it a part of our governance action checklist when adding new supported tokens.

File(s) affected: Portal.sol

Description: If any tokens used are deflationary or have a fee-on-transfer and do not maintain a constant supply, fewer funds than expected
could be transferred into the Portal contract when _depositFor() is executed. Therefore, the deposits mapping would hold an inflated
token balance for the depositOwner . While the deposit would execute successfully, when the depositOwner attempts to withdraw their

tokens, there could be an insufficient token balance in the Portal contract to support the withdrawal.

Recommendation: Avoid using deflationary or fee-on-transfer tokens in the Portal contract. If fee-on-transfer tokens are desired, check the
token balance of the Portal contract before and after the transfer to obtain the actual amount of tokens transferred. Note that for deflationary
tokens, it is difficult to track each user's deposit amount accurately, and additional logic would need to be added to the Portal contract to
support these tokens.

MEZO-4
PUSH0 Remains Unsupported on some Blockchains

• Informational Acknowledged

Update
Marked as "Acknowledged" by the client.
The client provided the following explanation:

The Mezo Portal smart contracts have the Solidity pragma fixed on version 0.8.24 and this version of
the compiler is used in hardhat.config.ts. We do not plan to deploy the Portal contract to L2s in the
near future but we will consider the PUSH0 limitation if we decide to do so.
 The OrangeKit smart contracts have the Solidity pragma fixed on version 0.8.25 and this version of
the compiler is used in hardhat.config.ts . PUSH0 could be a potential problem but we do not plan to
deploy OrangeKit contracts to L2s in the near future. We will consider this limitation if we decide to
do so.

Description: It should be noted that since Solidity version 0.8.20 , the PUSH0 opcode is being used. However, some EVM blockchains may not
support this opcode. Special care is advised given the potential changes to contract deployment code as well as the corresponding effect on
contract addresses; if the same contract addresses are desired across all chains, the same compilation options should be used for every
deployment.

Recommendation: Check whether the blockchains targeted for deployment support PUSH0 . If it is desired to deploy on blockchains that do not
implement PUSH0 , it would be advised to compile with the paris EVM version.

MEZO-5 Inconsistent Event Emission • Informational Acknowledged

Update
Marked as "Acknowledged" by the client.
The client provided the following explanation:

Acknowledged: https://github.com/thesis/mezo-portal/issues/811. Since the contracts are already
deployed and this issue is just informational, we will consider this change during the next potential
Portal contract upgrade.

File(s) affected: Portal.sol

Description: In the initialize() function, an array of supportedTokens are added to the contract. However, unlike in
addSupportedToken() , the event SupportedTokenAdded is not emitted for each new token.

Recommendation: Consider emitting the SupportedTokenAdded event for each token added in the initialize() function for consistency.

MEZO-6 Gas Savings • Informational Acknowledged

Update
Marked as "Acknowledged" by the client.
The client provided the following explanation:

Acknowledged: https://github.com/thesis/mezo-portal/issues/812. Since the contracts are already
deployed and this issue is just informational, we will consider this change during the next potential
BitcoinDepositor contract upgrade.

File(s) affected: BitcoinDepositor.sol , AbstractTBTCDepositor.sol

Description: Certain changes can be made to improve the gas efficiency of the contracts:
1. Use custom errors instead of require() .

Recommendation: Consider implementing the above recommendations.

MEZO-7 Unmasked Result of Create2 Address Calculation • Informational Fixed

Update
Marked as "Fixed" by the client.
Addressed in: 736822e .

File(s) affected: OrangeKitSafeFactory.sol

Description: The computeAddress() function in the OrangeKitSafeFactory contract is borrowed from OpenZeppelin's Create2
contract. Note that in a recent update of Create2 , the returned addr value is masked to prevent dirty upper bits from being used later in
assembly code blocks. See PR #4941 for more details.

Recommendation: We suggest following OpenZepplin's latest code by updating the corresponding line to:

addr := and(keccak256(start, 85), 0xff)

MEZO-8 ECDSA Signature Malleability • Informational Fixed

Update
Marked as "Fixed" by the client.
Addressed in: 84dce96 .

It is now checked whether s is greater than the appropriate threshold value. If it is, the transaction reverts.

File(s) affected: BitcoinSafeOwner.sol

https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4941

Description: The BitcoinSafeOwner uses ecrecover() to recover the signer from a given signature. Note that ecrecover() allows
signature malleability, where two different s values can be combined with the same r value to produce two valid signatures.

The malleability of the s value does not cause an issue in the current use case of recovering the signer. Still, it is best practice to avoid
signature malleability to enhance the code's robustness and prevent potential issues in future iterations.

Recommendation: Consider replacing ecrecover() with OpenZeppelin's recover() , which checks the s value to be within a specific
range and raises an error if not.

MEZO-9 Potential Incompatibility with ERC-4337 • Informational Acknowledged

Update
Marked as "Acknowledged" by the client.
The client provided the following explanation:

The plan for achieving ERC-4337 compatibility has been outlined in
https://github.com/thesis/orangekit/pull/81.

The plan mentioned above consists of an RFC. However, we note that if implemented as stated, the plan may result in a roadblock due
to rules in ERC-7562. We have followed up with the client.

File(s) affected: BitcoinSafeOwner.sol

Description: According to the given documentation "RFC: OrangeKit Bitcoin Account Metaprotocol", compatibility with ERC-4337 is one of the
goals when designing the smart account.

Typically, when an ERC-4337 account validates a user operation, the signature validation logic is forwarded to the owner via the ERC-1271 flow if
the owner is a contract, which is the approach implemented by the Safe4337Module . Therefore, the isValidSignature() function
implemented by the owner contract has to comply with the ERC-4337 validation rules. Otherwise, the user operation could be rejected by
bundlers.

Among the validation rules, the storage access rules restrict a non-entity contract to only access account-associated storage slots during the
validation phase. If the owner contract is a proxy contract, a call to the owner would violate the storage access rule as the implementation slot is
non-associated with the account. Since the owner is a BitcoinSafeOwner proxy, the call to isValidSignature() will be incompatible with
the validation of ERC-4337 user operations.

A minor thing to note is that the Safe contract of version v1.4.1 does not support ERC-4337 by default. Instead, the Safe4337Module should
be enabled at Safe deployment time afterward.

Recommendation: Consider how the smart account should support ERC-4337 and modify the contract to make the user operation validation
flow comply with the ERC-4337 standard.

MEZO-10 Privileged Roles and Ownership • Informational Acknowledged

Update
Marked as "Acknowledged" by the client.
The client provided the following explanation:

We inform our users about the custody model in our documentation: https://info.mezo.org/btc-custody-on-
mezo/deposit-custody but we will also improve it on the smart contract documentation level:
https://github.com/thesis/mezo-portal/issues/810.

Description: Smart contracts will often store specific addresses in order to accord them with special privileges, e.g. to make modifications to
other important data.

The following are a list of functions that are only accessible to particular addresses:

1. BitcoinSafeOwner
1. truncatedBitcoinAddress
2. upgradeSingleton()
3. emergencyGovernance.emergencyUpgrader()
4. emergencyUpgradeSingleton()

2. EmergencyGovernance
1. owner
2. disable()
3. setEmergencyUpgrader()

3. OrangeKitSafeFactory
1. owner

https://docs.safe.global/home/4337-safe
https://eips.ethereum.org/EIPS/eip-7562#definitions

2. upgradeSingleton()
3. transferOwnership()

4. Portal
1. owner
2. addSupportedToken()
3. setMinLockPeriod()
4. setMaxLockPeriod()

Note that some of the contracts are upgradeable, including BitcoinDepositor , Portal , BitcoinSafeOwner , and
OrangeKitSafeFactory . Such contracts can have their implementations changed by the owner of the proxy.

Recommendation: This centralization of power needs to be made clear to the users, especially depending on the level of privilege the contract
allows to the owner.

Definitions
High severity – High-severity issues usually put a large number of users' sensitive information at risk, or are reasonably likely to lead to
catastrophic impact for client's reputation or serious financial implications for client and users.

Medium severity – Medium-severity issues tend to put a subset of users' sensitive information at risk, would be detrimental for the client's
reputation if exploited, or are reasonably likely to lead to moderate financial impact.

Low severity – The risk is relatively small and could not be exploited on a recurring basis, or is a risk that the client has indicated is low
impact in view of the client's business circumstances.

Informational – The issue does not post an immediate risk, but is relevant to security best practices or Defence in Depth.

Undetermined – The impact of the issue is uncertain.

Fixed – Adjusted program implementation, requirements or constraints to eliminate the risk.

Mitigated – Implemented actions to minimize the impact or likelihood of the risk.

Acknowledged – The issue remains in the code but is a result of an intentional business or design decision. As such, it is supposed to be
addressed outside the programmatic means, such as: 1) comments, documentation, README, FAQ; 2) business processes; 3) analyses
showing that the issue shall have no negative consequences in practice (e.g., gas analysis, deployment settings).

Appendix
File Signatures

The following are the SHA-256 hashes of the reviewed files. A file with a different SHA-256 hash has been modified, intentionally or otherwise,
after the security review. You are cautioned that a different SHA-256 hash could be (but is not necessarily) an indication of a changed condition
or potential vulnerability that was not within the scope of the review.

Files

c40...82d ./mezo-contracts/EmergencyGovernance.sol

fcc...8e3 ./mezo-contracts/LegacyERC1271.sol

1c1...52b ./mezo-contracts/BitcoinDepositor.sol

96b...d80 ./mezo-contracts/Proxy.sol

b24...b8e ./mezo-contracts/Portal.sol

6f4...313 ./mezo-contracts/ERC1271.sol

bfd...7c2 ./mezo-contracts/BitcoinSafeOwner.sol

691...c94 ./mezo-contracts/OrangeKitDeployer.sol

711...bab ./mezo-contracts/OrangeKitSafeFactory.sol

acf...89e ./mezo-contracts/AbstractTBTCDepositor.sol

Tests

573...055 ./mezo-tests/keepnetwork-test/vault/TBTCVault.OptimisticMinting.test.ts

1fc...4e7 ./mezo-tests/keepnetwork-test/vault/TBTCVault.Redemption.test.ts

2ea...340 ./mezo-tests/keepnetwork-test/vault/TBTCVault.test.ts

ef9...976 ./mezo-tests/keepnetwork-test/vault/DonationVault.test.ts

355...79d ./mezo-tests/keepnetwork-test/helpers/contract-test-helpers.ts

e4d...927 ./mezo-tests/keepnetwork-test/data/moving-funds.ts

1c1...a3a ./mezo-tests/keepnetwork-test/data/deposit-sweep.ts

e54...080 ./mezo-tests/keepnetwork-test/data/ecdsa.ts

593...a19 ./mezo-tests/keepnetwork-test/data/redemption.ts

366...f63 ./mezo-tests/keepnetwork-test/data/fraud.ts

a83...f71 ./mezo-tests/keepnetwork-test/relay/LightRelayMaintainerProxy.test.ts

bed...d84 ./mezo-tests/keepnetwork-test/relay/LightRelay.test.ts

e1a...414 ./mezo-tests/keepnetwork-test/fixtures/bridge.ts

403...771 ./mezo-tests/keepnetwork-test/fixtures/index.ts

68a...cf0 ./mezo-tests/keepnetwork-test/l2/L2TBTC.test.ts

14c...874 ./mezo-tests/keepnetwork-test/l2/L2WormholeGateway.test.ts

9f0...99d ./mezo-tests/keepnetwork-test/integration/FullFlow.test.ts

7ed...0a9 ./mezo-tests/keepnetwork-test/integration/WalletCreation.test.ts

19d...ec7 ./mezo-tests/keepnetwork-test/integration/Slashing.test.ts

414...acd ./mezo-tests/keepnetwork-test/integration/data/integration.ts

88a...aa4 ./mezo-tests/keepnetwork-test/integration/data/bls.ts

e8b...fbd ./mezo-tests/keepnetwork-test/integration/utils/random-beacon.ts

3c7...150 ./mezo-tests/keepnetwork-test/integration/utils/ecdsa-wallet-registry.ts

f0a...f0f ./mezo-tests/keepnetwork-test/integration/utils/gas.ts

1ff...f7a ./mezo-tests/keepnetwork-test/integration/utils/staking.ts

dc0...736 ./mezo-tests/keepnetwork-test/integration/utils/fake-random-beacon.ts

b61...ad0 ./mezo-tests/keepnetwork-test/integration/utils/fixture.ts

d0d...d72 ./mezo-tests/keepnetwork-test/maintainer/MaintainerProxy.test.ts

a34...214 ./mezo-tests/keepnetwork-test/bridge/Bridge.Redemption.test.ts

0e9...7c8 ./mezo-tests/keepnetwork-test/bridge/WalletProposalValidator.test.ts

932...326 ./mezo-tests/keepnetwork-test/bridge/Bridge.Parameters.test.ts

769...7b5 ./mezo-tests/keepnetwork-test/bridge/BitcoinTx.test.ts

0e0...a51 ./mezo-tests/keepnetwork-test/bridge/Bridge.Wallets.test.ts

84f...486 ./mezo-tests/keepnetwork-test/bridge/Bridge.Deposit.test.ts

28f...e2a ./mezo-tests/keepnetwork-test/bridge/Bridge.Governance.test.ts

c48...c29 ./mezo-tests/keepnetwork-test/bridge/VendingMachine.Upgrade.test.ts

5ca...139 ./mezo-tests/keepnetwork-test/bridge/Bridge.MovingFunds.test.ts

421...cb7 ./mezo-tests/keepnetwork-test/bridge/Heartbeat.test.ts

604...ff9 ./mezo-tests/keepnetwork-test/bridge/Bridge.Vaults.test.ts

5fc...4e8 ./mezo-tests/keepnetwork-test/bridge/Bridge.Frauds.test.ts

e96...60e ./mezo-tests/keepnetwork-test/bridge/VendingMachineV3.test.ts

26c...c27 ./mezo-tests/keepnetwork-test/bridge/VendingMachine.test.ts

daf...52b ./mezo-tests/keepnetwork-test/bridge/Deployment.test.ts

6d0...5b1 ./mezo-tests/keepnetwork-test/bridge/VendingMachineV2.test.ts

027...ffa ./mezo-tests/keepnetwork-test/bridge/EcdsaLib.test.ts

db4...95c ./mezo-tests/keepnetwork-test/bank/Bank.test.ts

7df...bba ./mezo-tests/keepnetwork-test/integrator/AbstractTBTCDepositor.test.ts

4c9...4ff ./mezo-tests/orangekit-test/OrangeKitSafeFactory.upgrades.test.ts

405...0c4 ./mezo-tests/orangekit-test/BitcoinSafeOwner.test.ts

8fe...2e8 ./mezo-tests/orangekit-test/OrangeKitDeployer.test.ts

519...59f ./mezo-tests/orangekit-test/EmergencyGovernance.test.ts

dd8...e3c ./mezo-tests/orangekit-test/SafeWithBitcoinOwner.test.ts

9d9...32b ./mezo-tests/orangekit-test/BitcoinSafeOwner.upgrade.test.ts

ccf...99e ./mezo-tests/orangekit-test/OrangeKitSafeFactory.test.ts

48c...08e ./mezo-tests/orangekit-test/helpers/snapshot.ts

018...d6e ./mezo-tests/orangekit-test/helpers/testBitcoinWallet.ts

bac...aed ./mezo-tests/orangekit-test/helpers/bitcoinSafeOwner.test.ts

b90...e99 ./mezo-tests/orangekit-test/helpers/bitcoinSafeOwner.ts

2cc...9af ./mezo-tests/orangekit-test/fixtures/orangeKitFixture.ts

c9b...0f0 ./mezo-tests/mezoportal-test/Portal.lock.test.ts

1ac...60f ./mezo-tests/mezoportal-test/Portal.deposit.test.ts

b39...cf5 ./mezo-tests/mezoportal-test/Portal.test.ts

7bb...781 ./mezo-tests/mezoportal-test/BitcoinDepositor.test.ts

75c...052 ./mezo-tests/mezoportal-test/Portal.receiveApproval.test.ts

712...438 ./mezo-tests/mezoportal-test/Portal.upgrades.test.ts

7ae...6d0 ./mezo-tests/mezoportal-test/Portal.withdraw.test.ts

8e2...3ce ./mezo-tests/mezoportal-test/Portal.depositFor.test.ts

e96...46b ./mezo-tests/mezoportal-test/fixtures/deployPortal.ts

dc3...3d0 ./mezo-tests/mezoportal-test/integration/LockPeriod.test.ts

dc8...a45 ./mezo-tests/mezoportal-test/integration/SupportedTokens.test.ts

bc6...7d9 ./mezo-tests/mezoportal-test/integration/Depositing.test.ts

Toolset
The notes below outline the setup and steps performed in the process of this audit.

Setup

Tool Setup:
Slither v0.10.0

Steps taken to run the tools:
1. Install the Slither tool: pip3 install slither-analyzer
2. Run Slither from the project directory: slither .

Automated Analysis
Slither

No important issues were detected using Slither.

Test Suite Results
We were able to run all tests without failure.

Unit tests for 'keep-network/tbtc-v2'

 Bank
 PERMIT_TYPEHASH
 ✓ should be keccak256 of EIP2612 Permit message
 updateBridge
 when called by a third party
 ✓ should revert
 when called with 0-address bridge
 ✓ should revert
 when called by the governance
 ✓ should update the bridge
 ✓ should emit the BridgeUpdated event
 transferBalance
 when the recipient is the zero address
 ✓ should revert
 when the recipient is the bank address
 ✓ should revert
 when the spender has not enough balance
 ✓ should revert
 when the spender transfers part of their balance
 ✓ should transfer the requested amount
 ✓ should emit the BalanceTransferred event
 when the spender transfers part of their balance in two transactions
 ✓ should transfer the requested amount
 when the spender transfers their entire balance
 ✓ should transfer the entire balance
 ✓ should emit the BalanceTransferred event
 when the spender transfers 0 balance
 ✓ should transfer no balance
 ✓ should emit the BalanceTransferred event

https://github.com/crytic/slither
https://github.com/crytic/slither

 approveBalanceAndCall
 when the spender is the zero address
 ✓ should revert
 when the spender callback reverted
 ✓ should revert
 when the spender had no approved balance before
 ✓ should approve the requested amount
 ✓ should emit the BalanceApproved event
 ✓ should call receiveBalanceApproval
 when the spender had an approved balance before
 ✓ should replace the previous allowance
 ✓ should call receiveBalanceApproval
 approveBalance
 when the spender is the zero address
 ✓ should revert
 when the spender had no approved balance before
 when setting approval to non-zero amount
 ✓ should approve the requested amount
 ✓ should emit the BalanceApproved event
 when setting approval to zero
 ✓ should not change the zero approval
 ✓ should emit the BalanceApproved event
 when the spender had an approved balance before
 when setting approval back to zero
 ✓ should replace the previous allowance with zero
 when trying to overwrite with a non-zero value
 ✓ should revert
 increaseBalanceAllowance
 when the spender is the zero address
 ✓ should revert
 when the spender had no approved balance before
 ✓ should approve the requested amount
 ✓ should emit the BalanceApproved event
 when the spender had an approved balance before
 ✓ should increase the previous allowance
 when the spender has a maximum allowance
 ✓ should revert
 decreaseBalanceAllowance
 when the spender is the zero address
 ✓ should revert
 when the spender had no approved balance before
 ✓ should revert
 when the spender had an approved balance before
 ✓ should decrease the previous allowance
 transferBalanceFrom
 when the recipient is the zero address
 ✓ should revert
 when the recipient is the bank address
 ✓ should revert
 when the spender has not enough balance approved
 ✓ should revert
 when the owner has not enough balance
 ✓ should revert
 when the spender transfers part of the approved balance
 ✓ should transfer the requested amount
 ✓ should emit the BalanceTransferred event
 ✓ should reduce the spender allowance
 when the spender transfers part of the approved balance in two transactions
 ✓ should transfer the requested amount
 ✓ should emit BalanceTransferred events
 ✓ should reduce the spender allowance
 when the spender transfers the entire approved balance
 ✓ should transfer the requested amount
 ✓ should reduce the spender allowance to zero
 when the spender transfers the entire balance
 ✓ should transfer the requested amount
 ✓ should reduce the spender allowance to zero
 when given the maximum allowance
 ✓ should not reduce the spender allowance
 permit
 when permission expired
 ✓ should revert

 when permission has an invalid signature
 when owner does not match the permitting one
 ✓ should revert
 when spender does not match the signature
 ✓ should revert
 when permitted balance does not match the signature
 ✓ should revert
 when permitted deadline does not match the signature
 ✓ should revert
 when the spender is the zero address
 ✓ should revert
 when the spender had no permitted balance before
 ✓ should approve the requested amount
 ✓ should emit the BalanceApproved event
 ✓ should increment the nonce for the permitting owner
 when the spender had a permitted balance before
 ✓ should replace the previous approval
 ✓ should emit the BalanceApproved event
 ✓ should increment the nonce for the permitting owner
 when given never expiring permit
 ✓ should be accepted at any moment
 increaseBalance
 when called by a third party
 ✓ should revert
 when called by the bridge
 when increasing balance for the Bank
 ✓ should revert
 when called for a valid recipient
 ✓ should increase recipient's balance
 ✓ should emit the BalanceIncreased event
 increaseBalances
 when called by a third party
 ✓ should revert
 when called by the bridge
 when increasing balance for the bank
 ✓ should revert
 when there is more recipients than amounts
 ✓ should revert
 when there is more amounts than recipients
 ✓ should revert
 when called for a valid recipient
 ✓ should increase recipients' balances
 ✓ should emit BalanceIncreased events
 increaseBalanceAndCall
 when called by a third party
 ✓ should revert
 when called by the bridge
 ✓ should increase vault's balance
 ✓ should emit BalanceIncreased event
 ✓ should call the vault
 when depositors array has greater length than deposited amounts array
 ✓ should revert
 when deposited amounts array has greater length than depositors array
 ✓ should revert
 decreaseBalance
 ✓ should decrease caller's balance
 ✓ should emit the BalanceDecreased event
 DOMAIN_SEPARATOR
 ✓ should be keccak256 of EIP712 domain struct

 BitcoinTx
 validateProof
 when used with a valid but long proof
 ✓ should validate the proof with success
 ✓ should consume around 95000 gas

 Bridge - Deposit
transferred 4500000000 T to the VendingMachine for KEEP
transferred 4500000000 T to the VendingMachine for NU
Warning: Potentially unsafe deployment of WalletRegistry

 You are using the `unsafeAllow.external-library-linking` flag to include external libraries.

 Make sure you have manually checked that the linked libraries are upgrade safe.

Warning: Potentially unsafe deployment of BridgeStub

 You are using the `unsafeAllow.external-library-linking` flag to include external libraries.
 Make sure you have manually checked that the linked libraries are upgrade safe.

Initialized Wallet Owner address: 0x3c705dB336C81c7FEFC5746e283aB2c0781A4B7b in transaction:
0x4c54557085513b45258fe2a2f2b11d7b8abe6f870942f0d513209c4d26df7624
 revealDeposit
 when wallet is in Live state
 when reveal ahead period validation is disabled
 when funding transaction is P2SH
 when funding output script hash is correct
 when deposit was not revealed yet
 when amount is not below the dust threshold
 when deposit is routed to a trusted vault
 ✓ should store proper deposit data
 ✓ should emit DepositRevealed event
 when deposit is not routed to a vault
 ✓ should accept the deposit
 when deposit treasury fee is zero
 ✓ should store proper deposit data
 ✓ should accept the deposit
 when deposit is routed to a non-trusted vault
 ✓ should revert
 when amount is below the dust threshold
 ✓ should revert
 when deposit was already revealed
 ✓ should revert
 when funding output script hash is wrong
 ✓ should revert
 when the caller address does not match the funding output script
 ✓ should revert
 when funding transaction embeds extra data
 ✓ should revert
 when funding transaction is P2WSH
 when funding output script hash is correct
 when deposit was not revealed yet
 when deposit is routed to a trusted vault
 ✓ should store proper deposit data
 ✓ should emit DepositRevealed event
 when deposit is not routed to a vault
 ✓ should accept the deposit
 when deposit is routed to a non-trusted vault
 ✓ should revert
 when deposit was already revealed
 ✓ should revert
 when funding output script hash is wrong
 ✓ should revert
 when the caller address does not match the funding output script
 ✓ should revert
 when funding transaction embeds extra data
 ✓ should revert
 when funding transaction is neither P2SH nor P2WSH
 ✓ should revert
 when reveal ahead period validation is enabled
 when reveal ahead period is preserved
 ✓ should pass the refund locktime validation
 when reveal ahead period is not preserved
 ✓ should revert
 when refund locktime integer value is less than 500M
 ✓ should revert
 when wallet is not in Live state
 when wallet state is Unknown
 ✓ should revert
 when wallet state is MovingFunds
 ✓ should revert
 when the source wallet is in the Closing state
 ✓ should revert
 when wallet state is Closed
 ✓ should revert

 when wallet state is Terminated
 ✓ should revert
 revealDepositWithExtraData
 when extra data is non-zero
 when wallet is in Live state
 when reveal ahead period validation is disabled
 when funding transaction is P2SH
 when funding output script hash is correct
 when deposit was not revealed yet
 when amount is not below the dust threshold
 when deposit is routed to a trusted vault
 ✓ should store proper deposit data
 ✓ should emit DepositRevealed event
 when deposit is not routed to a vault
 ✓ should accept the deposit
 when deposit treasury fee is zero
 ✓ should store proper deposit data
 ✓ should accept the deposit
 when deposit is routed to a non-trusted vault
 ✓ should revert
 when amount is below the dust threshold
 ✓ should revert
 when deposit was already revealed
 ✓ should revert
 when funding output script hash is wrong
 ✓ should revert
 when the caller address does not match the funding output script
 ✓ should revert
 when the revealed extra data do not match
 ✓ should revert
 when funding transaction does not embed extra data
 ✓ should revert
 when funding transaction is P2WSH
 when funding output script hash is correct
 when deposit was not revealed yet
 when deposit is routed to a trusted vault
 ✓ should store proper deposit data
 ✓ should emit DepositRevealed event
 when deposit is not routed to a vault
 ✓ should accept the deposit
 when deposit is routed to a non-trusted vault
 ✓ should revert
 when deposit was already revealed
 ✓ should revert
 when funding output script hash is wrong
 ✓ should revert
 when the caller address does not match the funding output script
 ✓ should revert
 when the revealed extra data do not match
 ✓ should revert
 when funding transaction does not embed extra data
 ✓ should revert
 when funding transaction is neither P2SH nor P2WSH
 ✓ should revert
 when reveal ahead period validation is enabled
 when reveal ahead period is preserved
 ✓ should pass the refund locktime validation
 when reveal ahead period is not preserved
 ✓ should revert
 when refund locktime integer value is less than 500M
 ✓ should revert
 when wallet is not in Live state
 when wallet state is Unknown
 ✓ should revert
 when wallet state is MovingFunds
 ✓ should revert
 when the source wallet is in the Closing state
 ✓ should revert
 when wallet state is Closed
 ✓ should revert
 when wallet state is Terminated
 ✓ should revert

 when extra data is zero
 ✓ should revert
 submitDepositSweepProof
 when the wallet state is Live
 when transaction proof is valid
 when there is only one output
 when the single output is 20-byte
 when single output is either P2PKH or P2WPKH
 when main UTXO data are valid
 when transaction fee does not exceed the deposit transaction maximum fee
 when there is only one input
 when the single input is a revealed unswept P2SH deposit
 ✓ should mark deposit as swept
 ✓ should update main UTXO for the given wallet
 ✓ should update the depositor's balance
 ✓ should transfer collected treasury fee
 ✓ should emit DepositsSwept event
 when the single input is a revealed unswept P2WSH deposit
 ✓ should mark deposit as swept
 ✓ should update main UTXO for the given wallet
 ✓ should update the depositor's balance
 ✓ should transfer collected treasury fee
 ✓ should emit DepositsSwept event
 when the single input is a revealed unswept deposit with a trusted vault
 ✓ should mark deposit as swept
 ✓ should update main UTXO for the given wallet
 ✓ should not update the depositor's balance
 ✓ should update the vault's balance
 ✓ should call the vault's receiveBalanceIncrease function
 ✓ should transfer collected treasury fee
 ✓ should emit DepositsSwept event
 when the deposit treasury fee is zero
 ✓ should update the depositor's balance
 ✓ should collect no treasury fee
 when the single input is a revealed unswept deposit with a non-trusted vault
 ✓ should mark deposit as swept
 ✓ should update main UTXO for the given wallet
 ✓ should update the depositor's balance
 ✓ should transfer collected treasury fee
 ✓ should emit DepositsSwept event
 when the single input is a revealed unswept deposit with a trusted vault but non-
equal to the vault passed via function parameter
 ✓ should revert
 when the single input is the expected main UTXO
 ✓ should revert
 when the single input is a revealed but already swept deposit
 ✓ should revert
 when the single input is an unknown
 ✓ should revert
 when there are multiple inputs
 when input vector consists only of revealed unswept deposits and the expected main
UTXO
 ✓ should mark deposits as swept
 ✓ should update main UTXO for the given wallet
 ✓ should update the depositors balances
 ✓ should transfer collected treasury fee
 ✓ should mark the previous main UTXO as spent
 ✓ should emit DepositsSwept event
 when input vector consists only of revealed unswept deposits with a trusted vault
and the expected main UTXO
 ✓ should mark deposits as swept
 ✓ should update main UTXO for the given wallet
 ✓ should not update the depositors balances
 ✓ should update the vault's balance
 ✓ should call the vault's receiveBalanceIncrease function
 ✓ should transfer collected treasury fee
 ✓ should mark the previous main UTXO as spent
 ✓ should emit DepositsSwept event
 when input vector consists only of revealed unswept deposits with a non-trusted
vault and the expected main UTXO
 ✓ should mark deposits as swept
 ✓ should update main UTXO for the given wallet

 ✓ should update the depositors balances
 ✓ should transfer collected treasury fee
 ✓ should mark the previous main UTXO as spent
 ✓ should emit DepositsSwept event
 when input vector consists only of revealed unswept deposits with different trusted
vaults and the expected main UTXO
 ✓ should revert
 when input vector consists only of revealed unswept deposits but there is no main
UTXO since it is not expected
 ✓ should mark deposits as swept
 ✓ should update main UTXO for the given wallet
 ✓ should update the depositors balances
 ✓ should transfer collected treasury fee
 ✓ should emit DepositsSwept event
 when input vector consists only of revealed unswept deposits but there is no main
UTXO despite it is expected
 ✓ should revert
 when input vector contains a revealed but already swept deposit
 ✓ should revert
 when input vector contains an unknown input
 ✓ should revert
 when transaction fee exceeds the deposit transaction maximum fee
 ✓ should revert
 when main UTXO data are invalid
 ✓ should revert
 when single output is neither P2PKH nor P2WPKH
 ✓ should revert
 when the single output is not 20-byte
 ✓ should revert
 when output count is other than one
 ✓ should revert
 when transaction proof is not valid
 when input vector is not valid
 ✓ should revert
 when output vector is not valid
 ✓ should revert
 when transaction is not on same level of merkle tree as coinbase
 ✓ should revert
 when merkle proof is not valid
 ✓ should revert
 when coinbase merkle proof is not valid
 ✓ should revert
 when proof difficulty is not current nor previous
 ✓ should revert
 when headers chain length is not valid
 ✓ should revert
 when headers chain is not valid
 ✓ should revert
 when the work in the header is insufficient
 ✓ should revert
 when accumulated difficulty in headers chain is insufficient
Warning: Potentially unsafe deployment of BridgeStub

 You are using the `unsafeAllow.external-library-linking` flag to include external libraries.
 Make sure you have manually checked that the linked libraries are upgrade safe.

 ✓ should revert
 when transaction data is limited to 64 bytes
 ✓ should revert
 when the wallet state is MovingFunds
 ✓ should succeed
 when the wallet state is neither Live or MovingFunds
 when wallet state is Unknown
 ✓ should revert
 when wallet state is Closing
 ✓ should revert
 when wallet state is Closed
 ✓ should revert
 when wallet state is Terminated
 ✓ should revert

 Bridge - Fraud

 submitFraudChallenge
 when the wallet is in Live state
 when the amount of ETH deposited is enough
 when the data needed for signature verification is correct
 when the fraud challenge does not exist yet
 ✓ should transfer ether from the caller to the bridge
 ✓ should store the fraud challenge data
 ✓ should emit FraudChallengeSubmitted event
 when the fraud challenge already exists
 ✓ should revert
 when incorrect wallet public key is used
 ✓ should revert
 when incorrect sighash is used
 ✓ should revert
 when incorrect recovery ID is used
 ✓ should revert
 when incorrect signature data is used
 ✓ should revert
 when the amount of ETH deposited is too low
 ✓ should revert
 when the wallet is in MovingFunds state
 ✓ should succeed
 when the wallet is in Closing state
 ✓ should succeed
 when the wallet is in neither Live nor MovingFunds nor Closing state
 when wallet state is Unknown
 ✓ should revert
 when wallet state is Closed
 ✓ should revert
 when wallet state is Terminated
 ✓ should revert
 defeatFraudChallengeWithHeartbeat
 when the challenge exists
 when the challenge is open
 when the heartbeat message has correct format
 ✓ should mark the challenge as resolved
 ✓ should send the ether deposited by the challenger to the treasury
 ✓ should emit FraudChallengeDefeated event
 when the heartbeat message has no correct format
 ✓ should revert
 when the challenge is resolved by defeat
 ✓ should revert
 when the challenge is resolved by timeout
 ✓ should revert
 when the challenge does not exist
 ✓ should revert
 defeatFraudChallenge
 when the challenge exists
 when the challenge is open
 when the sighash type is correct
 when the input is non-witness
 when the transaction has single input
 when the input is marked as correctly spent in the Bridge
 ✓ should mark the challenge as resolved
 ✓ should send the ether deposited by the challenger to the treasury
 ✓ should emit FraudChallengeDefeated event
 when the input is not marked as correctly spent in the Bridge
 ✓ should revert
 when the transaction has multiple inputs
 when the input is marked as correctly spent in the Bridge
 ✓ should mark the challenge as resolved
 ✓ should send the ether deposited by the challenger to the treasury
 ✓ should emit FraudChallengeDefeated event
 when the input is not marked as correctly spent in the Bridge
 ✓ should revert
 when the input is witness
 when the transaction has single input
 when the input is marked as correctly spent in the Bridge
 ✓ should mark the challenge as resolved
 ✓ should send the ether deposited by the challenger to the treasury
 ✓ should emit FraudChallengeDefeated event
 when the input is not marked as correctly spent in the Bridge

 ✓ should revert
 when the transaction has multiple inputs
 when the input is marked as correctly spent in the Bridge
 ✓ should mark the challenge as resolved
 ✓ should send the ether deposited by the challenger to the treasury
 ✓ should emit FraudChallengeDefeated event
 when the input is not marked as correctly spent in the Bridge
 ✓ should revert
 when the sighash type is incorrect
 ✓ should revert
 when the challenge is resolved by defeat
 ✓ should revert
 when the challenge is resolved by timeout
 ✓ should revert
 when the challenge does not exist
 ✓ should revert
 notifyFraudChallengeDefeatTimeout
 when the fraud challenge exists
 when the fraud challenge is open
 when the fraud challenge has timed out
 when the wallet is in the Live or MovingFunds or Closing state
 when wallet state is Live but the wallet is not the active one
 ✓ should mark the fraud challenge as resolved
 ✓ should return the deposited ether to the challenger
 ✓ should emit FraudChallengeDefeatTimedOut event
 ✓ should change the wallet state to Terminated
 ✓ should emit WalletTerminated event
 ✓ should call the ECDSA wallet registry's closeWallet function
 ✓ should call the ECDSA wallet registry's seize function
 ✓ should decrease the live wallets count
 ✓ should not unset the active wallet
 when wallet state is Live and the wallet is the active one
 ✓ should mark the fraud challenge as resolved
 ✓ should return the deposited ether to the challenger
 ✓ should emit FraudChallengeDefeatTimedOut event
 ✓ should change the wallet state to Terminated
 ✓ should emit WalletTerminated event
 ✓ should call the ECDSA wallet registry's closeWallet function
 ✓ should call the ECDSA wallet registry's seize function
 ✓ should decrease the live wallets count
 ✓ should unset the active wallet
 when wallet state is MovingFunds
 ✓ should mark the fraud challenge as resolved
 ✓ should return the deposited ether to the challenger
 ✓ should emit FraudChallengeDefeatTimedOut event
 ✓ should change the wallet state to Terminated
 ✓ should emit WalletTerminated event
 ✓ should call the ECDSA wallet registry's closeWallet function
 ✓ should call the ECDSA wallet registry's seize function
 when wallet state is Closing
 ✓ should mark the fraud challenge as resolved
 ✓ should return the deposited ether to the challenger
 ✓ should emit FraudChallengeDefeatTimedOut event
 ✓ should change the wallet state to Terminated
 ✓ should emit WalletTerminated event
 ✓ should call the ECDSA wallet registry's closeWallet function
 ✓ should call the ECDSA wallet registry's seize function
 when the wallet is in the Terminated state
 ✓ should mark the fraud challenge as resolved
 ✓ should return the deposited ether to the challenger
 ✓ should emit FraudChallengeDefeatTimedOut event
 ✓ should not change the wallet state
 ✓ should not call the ECDSA wallet registry's seize function
 when the wallet is neither in the Live nor MovingFunds nor Closing nor Terminated state
 when the wallet is in the Unknown state
 ✓ should revert
 when the wallet is in the Closed state
 ✓ should revert
 when the fraud challenge has not timed out yet
 ✓ should revert
 when the fraud challenge is resolved by challenge defeat
 ✓ should revert

 when the fraud challenge is resolved by previous timeout notification
 ✓ should revert
 when the fraud challenge does not exist
 ✓ should revert

 Bridge - Governance
 beginGovernanceDelayUpdate
 when the caller is not the owner
 ✓ should revert
 when the caller is the owner
 ✓ should not update the governance delay
 finalizeGovernanceDelayUpdate
 when the caller is not the owner
 ✓ should revert
 when the update process is not initialized
 ✓ should revert
 when the governance delay has not passed
 ✓ should revert
 when the update process is initialized and governance delay passed
 ✓ should update the governance delay
 ✓ should reset the governance delay timer
 beginBridgeGovernanceTransfer
 when the caller is not the owner
 ✓ should revert
 when the caller is the owner
 ✓ should not update the bridge governance
 ✓ should not update the bridge governance owner
 ✓ should emit BridgeGovernanceTransferStarted event
 finalizeBridgeGovernanceTransfer
 when the caller is not the owner
 ✓ should revert
 when the update process is not initialized
 ✓ should revert
 when the governance delay has not passed
 ✓ should revert
 when the update process is initialized and governance delay passed
 ✓ should update the bridge governance
 ✓ should not update the bridgeGovernance owner
 beginDepositDustThresholdUpdate
 when the caller is not the owner
 ✓ should revert
 when the caller is the owner
 ✓ should not update the deposit dust threshold
 ✓ should emit DepositDustThresholdUpdateStarted event
 finalizeDepositDustThresholdUpdate
 when the caller is not the owner
 ✓ should revert
 when the update process is not initialized
 ✓ should revert
 when the governance delay has not passed
 ✓ should revert
 when the update process is initialized and governance delay passed
 ✓ should update the deposit dust threshold
 ✓ should emit DepositDustThresholdUpdated event
 beginDepositTreasuryFeeDivisorUpdate
 when the caller is not the owner
 ✓ should revert
 when the caller is the owner
 ✓ should not update the deposit treasury fee divisor
 ✓ should emit DepositTreasuryFeeDivisorUpdateStarted event
 finalizeDepositTreasuryFeeDivisorUpdate
 when the caller is not the owner
 ✓ should revert
 when the update process is not initialized
 ✓ should revert
 when the governance delay has not passed
 ✓ should revert
 when the update process is initialized and governance delay passed
 ✓ should update the deposit treasury fee divisor
 ✓ should emit DepositTreasuryFeeDivisorUpdated event
 beginDepositTxMaxFeeUpdate
 when the caller is not the owner

 ✓ should revert
 when the caller is the owner
 ✓ should not update the deposit tx max fee
 ✓ should emit DepositTxMaxFeeUpdateStarted event
 finalizeDepositTxMaxFeeUpdate
 when the caller is not the owner
 ✓ should revert
 when the update process is not initialized
 ✓ should revert
 when the governance delay has not passed
 ✓ should revert
 when the update process is initialized and governance delay passed
 ✓ should update the deposit tx max fee
 ✓ should emit DepositTxMaxFeeUpdated event
 beginDepositRevealAheadPeriodUpdate
 when the caller is not the owner
 ✓ should revert
 when the caller is the owner
 ✓ should not update the deposit reveal ahead period
 ✓ should emit DepositRevealAheadPeriodUpdateStarted event
 finalizeDepositRevealAheadPeriodUpdate
 when the caller is not the owner
 ✓ should revert
 when the update process is not initialized
 ✓ should revert
 when the governance delay has not passed
 ✓ should revert
 when the update process is initialized and governance delay passed
 ✓ should update the deposit reveal ahead period
 ✓ should emit DepositRevealAheadPeriodUpdated event
 beginRedemptionDustThresholdUpdate
 when the caller is not the owner
 ✓ should revert
 when the caller is the owner
 ✓ should not update the redemption dust threshold
 ✓ should emit RedemptionDustThresholdUpdateStarted event
 finalizeRedemptionDustThresholdUpdate
 when the caller is not the owner
 ✓ should revert
 when the update process is not initialized
 ✓ should revert
 when the governance delay has not passed
 ✓ should revert
 when the update process is initialized and governance delay passed
 ✓ should update the redemption dust threshold
 ✓ should emit RedemptionDustThresholdUpdated event
 beginRedemptionTreasuryFeeDivisorUpdate
 when the caller is not the owner
 ✓ should revert
 when the caller is the owner
 ✓ should not update the redemption treasury fee divisor
 ✓ should emit RedemptionTreasuryFeeDivisorUpdateStarted event
 finalizeRedemptionTreasuryFeeDivisorUpdate
 when the caller is not the owner
 ✓ should revert
 when the update process is not initialized
 ✓ should revert
 when the governance delay has not passed
 ✓ should revert
 when the update process is initialized and governance delay passed
 ✓ should update the redemption treasury fee divisor
 ✓ should emit RedemptionTreasuryFeeDivisorUpdated event
 beginRedemptionTxMaxTotalFeeUpdate
 when the caller is not the owner
 ✓ should revert
 when the caller is the owner
 ✓ should not update the redemption tx max total fee
 ✓ should emit RedemptionTxMaxTotalFeeUpdateStarted event
 finalizeRedemptionTxMaxTotalFeeUpdate
 when the caller is not the owner
 ✓ should revert
 when the update process is not initialized

 ✓ should revert
 when the governance delay has not passed
 ✓ should revert
 when the update process is initialized and governance delay passed
 ✓ should update the redemption tx max total fee
 ✓ should emit RedemptionTxMaxTotalFeeUpdated event
 beginRedemptionTimeoutUpdate
 when the caller is not the owner
 ✓ should revert
 when the caller is the owner
 ✓ should not update the redemption timeout
 ✓ should emit RedemptionTimeoutUpdateStarted event
 finalizeRedemptionTimeoutUpdate
 when the caller is not the owner
 ✓ should revert
 when the update process is not initialized
 ✓ should revert
 when the governance delay has not passed
 ✓ should revert
 when the update process is initialized and governance delay passed
 ✓ should update the redemption timeout
 ✓ should emit RedemptionTimeoutUpdated event
 beginRedemptionTimeoutSlashingAmountUpdate
 when the caller is not the owner
 ✓ should revert
 when the caller is the owner
 ✓ should not update the redemption timeout slashing amount
 ✓ should emit RedemptionTimeoutSlashingAmountUpdateStarted event
 finalizeRedemptionTimeoutSlashingAmountUpdate
 when the caller is not the owner
 ✓ should revert
 when the update process is not initialized
 ✓ should revert
 when the governance delay has not passed
 ✓ should revert
 when the update process is initialized and governance delay passed
 ✓ should update the redemption timeout slashing amount
 ✓ should emit RedemptionTimeoutSlashingAmountUpdated event
 beginRedemptionTimeoutNotifierRewardMultiplierUpdate
 when the caller is not the owner
 ✓ should revert
 when the caller is the owner
 ✓ should not update the redemption timeout notifier reward multiplier
 ✓ should emit RedemptionTimeoutNotifierRewardMultiplierUpdateStarted event
 finalizeRedemptionTimeoutNotifierRewardMultiplierUpdate
 when the caller is not the owner
 ✓ should revert
 when the update process is not initialized
 ✓ should revert
 when the governance delay has not passed
 ✓ should revert
 when the update process is initialized and governance delay passed
 ✓ should update the redemption timeout notifier reward multiplier
 ✓ should emit RedemptionTimeoutNotifierRewardMultiplierUpdated event
 beginMovingFundsTxMaxTotalFeeUpdate
 when the caller is not the owner
 ✓ should revert
 when the caller is the owner
 ✓ should not update the moving funds tx max total fee
 ✓ should emit MovingFundsTxMaxTotalFeeUpdateStarted event
 finalizeMovingFundsTxMaxTotalFeeUpdate
 when the caller is not the owner
 ✓ should revert
 when the update process is not initialized
 ✓ should revert
 when the governance delay has not passed
 ✓ should revert
 when the update process is initialized and governance delay passed
 ✓ should update the moving funds tx max total fee
 ✓ should emit MovingFundsTxMaxTotalFeeUpdated event
 beginMovingFundsDustThresholdUpdate
 when the caller is not the owner

 ✓ should revert
 when the caller is the owner
 ✓ should not update the moving funds dust threshold
 ✓ should emit MovingFundsDustThresholdUpdateStarted event
 finalizeMovingFundsDustThresholdUpdate
 when the caller is not the owner
 ✓ should revert
 when the update process is not initialized
 ✓ should revert
 when the governance delay has not passed
 ✓ should revert
 when the update process is initialized and governance delay passed
 ✓ should update the moving funds dust threshold
 ✓ should emit MovingFundsDustThresholdUpdated event
 beginMovingFundsTimeoutResetDelayUpdate
 when the caller is not the owner
 ✓ should revert
 when the caller is the owner
 ✓ should not update the moving funds timeout reset delay
 ✓ should emit MovingFundsTimeoutResetDelayUpdateStarted event
 finalizeMovingFundsTimeoutResetDelayUpdate
 when the caller is not the owner
 ✓ should revert
 when the update process is not initialized
 ✓ should revert
 when the governance delay has not passed
 ✓ should revert
 when the update process is initialized and governance delay passed
 ✓ should update the moving funds timeout reset delay
 ✓ should emit MovingFundsTimeoutResetDelayUpdated event
 beginMovingFundsTimeoutUpdate
 when the caller is not the owner
 ✓ should revert
 when the caller is the owner
 ✓ should not update the moving funds timeout
 ✓ should emit MovingFundsTimeoutUpdateStarted event
 finalizeMovingFundsTimeoutUpdate
 when the caller is not the owner
 ✓ should revert
 when the update process is not initialized
 ✓ should revert
 when the governance delay has not passed
 ✓ should revert
 when the update process is initialized and governance delay passed
 ✓ should update the moving funds timeout
 ✓ should emit MovingFundsTimeoutUpdated event
 beginMovingFundsTimeoutSlashingAmountUpdate
 when the caller is not the owner
 ✓ should revert
 when the caller is the owner
 ✓ should not update the moving funds timeout slashing amount
 ✓ should emit MovingFundsTimeoutSlashingAmountUpdateStarted event
 finalizeMovingFundsTimeoutSlashingAmountUpdate
 when the caller is not the owner
 ✓ should revert
 when the update process is not initialized
 ✓ should revert
 when the governance delay has not passed
 ✓ should revert
 when the update process is initialized and governance delay passed
 ✓ should update the moving funds timeout slashing amount
 ✓ should emit MovingFundsTimeoutSlashingAmountUpdated event
 beginMovingFundsTimeoutNotifierRewardMultiplierUpdate
 when the caller is not the owner
 ✓ should revert
 when the caller is the owner
 ✓ should not update the moving funds timeout notifier reward multiplier
 ✓ should emit MovingFundsTimeoutNotifierRewardMultiplierUpdateStarted event
 finalizeMovingFundsTimeoutNotifierRewardMultiplierUpdate
 when the caller is not the owner
 ✓ should revert
 when the update process is not initialized

 ✓ should revert
 when the governance delay has not passed
 ✓ should revert
 when the update process is initialized and governance delay passed
 ✓ should update the moving funds timeout notifier reward multiplier
 ✓ should emit MovingFundsTimeoutNotifierRewardMultiplierUpdated event
 beginMovingFundsCommitmentGasOffsetUpdate
 when the caller is not the owner
 ✓ should revert
 when the caller is the owner
 ✓ should not update the moving funds commitment gas offset
 ✓ should emit MovingFundsCommitmentGasOffsetUpdateStarted event
 finalizeMovingFundsCommitmentGasOffsetUpdate
 when the caller is not the owner
 ✓ should revert
 when the update process is not initialized
 ✓ should revert
 when the governance delay has not passed
 ✓ should revert
 when the update process is initialized and governance delay passed
 ✓ should update the moving funds commitment gas offset
 ✓ should emit MovingFundsCommitmentGasOffsetUpdated event
 beginMovedFundsSweepTxMaxTotalFeeUpdate
 when the caller is not the owner
 ✓ should revert
 when the caller is the owner
 ✓ should not update the moved funds sweep tx max total fee
 ✓ should emit MovedFundsSweepTxMaxTotalFeeUpdateStarted event
 finalizeMovedFundsSweepTxMaxTotalFeeUpdate
 when the caller is not the owner
 ✓ should revert
 when the update process is not initialized
 ✓ should revert
 when the governance delay has not passed
 ✓ should revert
 when the update process is initialized and governance delay passed
 ✓ should update the moved funds sweep tx max total fee
 ✓ should emit MovedFundsSweepTxMaxTotalFeeUpdated event
 beginMovedFundsSweepTimeoutUpdate
 when the caller is not the owner
 ✓ should revert
 when the caller is the owner
 ✓ should not update the moved funds sweep timeout
 ✓ should emit MovedFundsSweepTimeoutUpdateStarted event
 finalizeMovedFundsSweepTimeoutUpdate
 when the caller is not the owner
 ✓ should revert
 when the update process is not initialized
 ✓ should revert
 when the governance delay has not passed
 ✓ should revert
 when the update process is initialized and governance delay passed
 ✓ should update the moved funds sweep timeout
 ✓ should emit MovedFundsSweepTimeoutUpdated event
 beginMovedFundsSweepTimeoutSlashingAmountUpdate
 when the caller is not the owner
 ✓ should revert
 when the caller is the owner
 ✓ should not update the moved funds sweep timeout slashing amount
 ✓ should emit MovedFundsSweepTimeoutSlashingAmountUpdateStarted event
 finalizeMovedFundsSweepTimeoutSlashingAmountUpdate
 when the caller is not the owner
 ✓ should revert
 when the update process is not initialized
 ✓ should revert
 when the governance delay has not passed
 ✓ should revert
 when the update process is initialized and governance delay passed
 ✓ should update the moved funds sweep timeout slashing amount
 ✓ should emit MovedFundsSweepTimeoutSlashingAmountUpdated event
 beginMovedFundsSweepTimeoutNotifierRewardMultiplierUpdate
 when the caller is not the owner

 ✓ should revert
 when the caller is the owner
 ✓ should not update the moved funds sweep timeout notifier reward multiplier
 ✓ should emit MovedFundsSweepTimeoutNotifierRewardMultiplierUpdateStarted event
 finalizeMovedFundsSweepTimeoutNotifierRewardMultiplierUpdate
 when the caller is not the owner
 ✓ should revert
 when the update process is not initialized
 ✓ should revert
 when the governance delay has not passed
 ✓ should revert
 when the update process is initialized and governance delay passed
 ✓ should update the moved funds sweep timeout notifier reward multiplier
 ✓ should emit MovedFundsSweepTimeoutNotifierRewardMultiplierUpdated event
 beginWalletCreationPeriodUpdate
 when the caller is not the owner
 ✓ should revert
 when the caller is the owner
 ✓ should not update the wallet creation period
 ✓ should emit WalletCreationPeriodUpdateStarted event
 finalizeWalletCreationPeriodUpdate
 when the caller is not the owner
 ✓ should revert
 when the update process is not initialized
 ✓ should revert
 when the governance delay has not passed
 ✓ should revert
 when the update process is initialized and governance delay passed
 ✓ should update the wallet creation period
 ✓ should emit WalletCreationPeriodUpdated event
 beginWalletCreationMinBtcBalanceUpdate
 when the caller is not the owner
 ✓ should revert
 when the caller is the owner
 ✓ should not update the wallet creation min btc balance
 ✓ should emit WalletCreationMinBtcBalanceUpdateStarted event
 finalizeWalletCreationMinBtcBalanceUpdate
 when the caller is not the owner
 ✓ should revert
 when the update process is not initialized
 ✓ should revert
 when the governance delay has not passed
 ✓ should revert
 when the update process is initialized and governance delay passed
 ✓ should update the wallet creation min btc balance
 ✓ should emit WalletCreationMinBtcBalanceUpdated event
 beginWalletCreationMaxBtcBalanceUpdate
 when the caller is not the owner
 ✓ should revert
 when the caller is the owner
 ✓ should not update the wallet creation max btc balance
 ✓ should emit WalletCreationMaxBtcBalanceUpdateStarted event
 finalizeWalletCreationMaxBtcBalanceUpdate
 when the caller is not the owner
 ✓ should revert
 when the update process is not initialized
 ✓ should revert
 when the governance delay has not passed
 ✓ should revert
 when the update process is initialized and governance delay passed
 ✓ should update the wallet creation max btc balance
 ✓ should emit WalletCreationMaxBtcBalanceUpdated event
 beginWalletClosureMinBtcBalanceUpdate
 when the caller is not the owner
 ✓ should revert
 when the caller is the owner
 ✓ should not update the wallet closure min btc balance
 ✓ should emit WalletClosureMinBtcBalanceUpdateStarted event
 finalizeWalletClosureMinBtcBalanceUpdate
 when the caller is not the owner
 ✓ should revert
 when the update process is not initialized

 ✓ should revert
 when the governance delay has not passed
 ✓ should revert
 when the update process is initialized and governance delay passed
 ✓ should update the wallet closure min btc balance
 ✓ should emit WalletClosureMinBtcBalanceUpdated event
 beginWalletMaxAgeUpdate
 when the caller is not the owner
 ✓ should revert
 when the caller is the owner
 ✓ should not update the wallet max age
 ✓ should emit WalletMaxAgeUpdateStarted event
 finalizeWalletMaxAgeUpdate
 when the caller is not the owner
 ✓ should revert
 when the update process is not initialized
 ✓ should revert
 when the governance delay has not passed
 ✓ should revert
 when the update process is initialized and governance delay passed
 ✓ should update the wallet max age
 ✓ should emit WalletMaxAgeUpdated event
 beginWalletMaxBtcTransferUpdate
 when the caller is not the owner
 ✓ should revert
 when the caller is the owner
 ✓ should not update the wallet max btc transfer
 ✓ should emit WalletMaxBtcTransferUpdateStarted event
 finalizeWalletMaxBtcTransferUpdate
 when the caller is not the owner
 ✓ should revert
 when the update process is not initialized
 ✓ should revert
 when the governance delay has not passed
 ✓ should revert
 when the update process is initialized and governance delay passed
 ✓ should update the wallet max btc transfer
 ✓ should emit WalletMaxBtcTransferUpdated event
 beginWalletClosingPeriodUpdate
 when the caller is not the owner
 ✓ should revert
 when the caller is the owner
 ✓ should not update the wallet closing period
 ✓ should emit WalletClosingPeriodUpdateStarted event
 finalizeWalletClosingPeriodUpdate
 when the caller is not the owner
 ✓ should revert
 when the update process is not initialized
 ✓ should revert
 when the governance delay has not passed
 ✓ should revert
 when the update process is initialized and governance delay passed
 ✓ should update the wallet closing period
 ✓ should emit WalletClosingPeriodUpdated event
 beginFraudChallengeDepositAmountUpdate
 when the caller is not the owner
 ✓ should revert
 when the caller is the owner
 ✓ should not update the fraud challenge deposit amount
 ✓ should emit FraudChallengeDepositAmountUpdateStarted event
 finalizeFraudChallengeDepositAmountUpdate
 when the caller is not the owner
 ✓ should revert
 when the update process is not initialized
 ✓ should revert
 when the governance delay has not passed
 ✓ should revert
 when the update process is initialized and governance delay passed
 ✓ should update the fraud challenge deposit amount
 ✓ should emit FraudChallengeDepositAmountUpdated event
 beginFraudChallengeDefeatTimeoutUpdate
 when the caller is not the owner

 ✓ should revert
 when the caller is the owner
 ✓ should not update the fraud challenge defeat timeout
 ✓ should emit FraudChallengeDefeatTimeoutUpdateStarted event
 finalizeFraudChallengeDefeatTimeoutUpdate
 when the caller is not the owner
 ✓ should revert
 when the update process is not initialized
 ✓ should revert
 when the governance delay has not passed
 ✓ should revert
 when the update process is initialized and governance delay passed
 ✓ should update the fraud challenge defeat timeout
 ✓ should emit FraudChallengeDefeatTimeoutUpdated event
 beginFraudSlashingAmountUpdate
 when the caller is not the owner
 ✓ should revert
 when the caller is the owner
 ✓ should not update the fraud slashing amount
 ✓ should emit FraudSlashingAmountUpdateStarted event
 finalizeFraudSlashingAmountUpdate
 when the caller is not the owner
 ✓ should revert
 when the update process is not initialized
 ✓ should revert
 when the governance delay has not passed
 ✓ should revert
 when the update process is initialized and governance delay passed
 ✓ should update the fraud slashing amount
 ✓ should emit FraudSlashingAmountUpdated event
 beginFraudNotifierRewardMultiplierUpdate
 when the caller is not the owner
 ✓ should revert
 when the caller is the owner
 ✓ should not update the fraud notifier reward multiplier
 ✓ should emit FraudNotifierRewardMultiplierUpdateStarted event
 finalizeFraudNotifierRewardMultiplierUpdate
 when the caller is not the owner
 ✓ should revert
 when the update process is not initialized
 ✓ should revert
 when the governance delay has not passed
 ✓ should revert
 when the update process is initialized and governance delay passed
 ✓ should update the fraud notifier reward multiplier
 ✓ should emit FraudNotifierRewardMultiplierUpdated event
 beginTreasuryUpdate
 when the caller is not the owner
 ✓ should revert
 when the caller is the owner
 ✓ should not update the treasury address
 ✓ should emit TreasuryUpdateStarted event
 finalizeTreasuryUpdate
 when the caller is not the owner
 ✓ should revert
 when the update process is not initialized
 ✓ should revert
 when the governance delay has not passed
 ✓ should revert
 when the update process is initialized and governance delay passed
 ✓ should update the treasury address
 ✓ should emit TreasuryUpdated event
 setVaultStatus
 when the caller is not the owner
 ✓ should revert
 when the caller is the owner
 ✓ should mark the vault as trusted
 ✓ should emit VaultStatusUpdated event
 setRedemptionWatchtower
 when caller is not the owner
 ✓ should revert
 when caller is the owner

 ✓ should not revert

 Bridge - Moving funds
 submitMovingFundsCommitment
 when source wallet is in the MovingFunds state
 when source wallet has no pending redemptions
 when source wallet has no pending moved funds sweep requests
 when the commitment was not submitted yet
 when the caller is a member of the source wallet
 when passed wallet main UTXO is valid
 when wallet balance is greater than zero
 when the expected target wallets count is greater than zero
 when the submitted target wallets count is same as the expected
 when all target wallets are different than the source wallet
 when all target wallets follow the expected order
 when all target wallets are in the Live state
 ✓ should store the target wallets commitment for the given wallet
 ✓ should emit the MovingFundsCommitmentSubmitted event
 ✓ should refund ETH
 when one of the target wallets is not in the Live state
 ✓ should revert
 when one of the target wallets break the expected order
 ✓ should revert
 when one of the target wallets is same as the source wallet
 ✓ should revert
 when the submitted target wallets count is other than the expected
 ✓ should revert
 when the expected target wallets count is zero
 ✓ should revert
 when wallet balance is zero
 ✓ should revert
 when passed wallet main UTXO is invalid
 ✓ should revert
 when the caller is not a member of the source wallet
 ✓ should revert
 when the commitment was already submitted
 ✓ should revert
 when source wallet has pending moved funds sweep requests
 ✓ should revert
 when source wallet has pending redemptions
 ✓ should revert
 when source wallet is not in the MovingFunds state
 when the source wallet is in the Unknown state
 ✓ should revert
 when the source wallet is in the Live state
 ✓ should revert
 when the source wallet is in the Closing state
 ✓ should revert
 when the source wallet is in the Closed state
 ✓ should revert
 when the source wallet is in the Terminated state
 ✓ should revert
 resetMovingFundsTimeout
 when the wallet is in the MovingFunds state
 when the wallet's commitment is not submitted yet
 when Live wallets count is zero
 when reset delay has elapsed
 ✓ should reset the moving funds timeout
 ✓ should emit MovingFundsTimeoutReset event
 when reset delay has not elapsed yet
 ✓ should revert
 when one reset occurred and the reset delay has elapsed again
 ✓ should reset the moving funds timeout
 ✓ should emit MovingFundsTimeoutReset event
 when one reset occurred and the reset delay has not elapsed yet
 ✓ should revert
 when Live wallets count is not zero
 ✓ should revert
 when the wallet's commitment is already submitted
 ✓ should revert
 when the wallet is not in the MovingFunds state
 when the wallet is in the Unknown state

 ✓ should revert
 when the wallet is in the Live state
 ✓ should revert
 when the wallet is in the Closing state
 ✓ should revert
 when the wallet is in the Closed state
 ✓ should revert
 when the wallet is in the Terminated state
 ✓ should revert
 submitMovingFundsProof
 when transaction proof is valid
 when there is a main UTXO for the given wallet
 when main UTXO data are valid
 when there is only one input
 when the single input points to the wallet's main UTXO
 when the output vector references only 20-byte hashes
 when the output vector has only P2PKH and P2WPKH outputs
 when transaction amount is distributed evenly
 when transaction fee is not too high
 when source wallet is in the MovingFunds state
 when target wallets commitment is submitted
 when actual target wallets correspond to the commitment
 when there is a single target wallet
 ✓ should mark the main UTXO as correctly spent
 ✓ should unset the main UTXO for the source wallet
 ✓ should put the source wallet in the Closing state
 ✓ should set the closing started timestamp
 ✓ should emit the WalletClosing event
 ✓ should emit the MovingFundsCompleted event
 ✓ should create appropriate moved funds sweep requests
 when there are multiple target wallets and the amount is indivisible
 ✓ should mark the main UTXO as correctly spent
 ✓ should unset the main UTXO for the source wallet
 ✓ should put the source wallet in the Closing state
 ✓ should set the closing started timestamp
 ✓ should emit the WalletClosing event
 ✓ should emit the MovingFundsCompleted event
 ✓ should create appropriate moved funds sweep requests
 when there are multiple target wallets and the amount is divisible
 ✓ should mark the main UTXO as correctly spent
 ✓ should unset the main UTXO for the source wallet
 ✓ should put the source wallet in the Closing state
 ✓ should set the closing started timestamp
 ✓ should emit the WalletClosing event
 ✓ should emit the MovingFundsCompleted event
 ✓ should create appropriate moved funds sweep requests
 when actual target wallets does not correspond to the commitment
 when funds were sent to more wallets than submitted in the commitment
 ✓ should revert
 when funds were sent to less wallets than submitted in the commitment
 ✓ should revert
(node:4571) PromiseRejectionHandledWarning: Promise rejection was handled asynchronously (rejection id:
11)
(Use `node --trace-warnings ...` to show where the warning was created)
 when funds were sent to completely different wallets than submitted in the
commitment
 ✓ should revert
 when funds were sent to the wallets submitted in the commitment but with a
wrong order
 ✓ should revert
 when target wallets commitment is not submitted
 ✓ should revert
 when source wallet is not in the MovingFunds state
 when wallet state is Unknown
 ✓ should revert
 when wallet state is Live
 ✓ should revert
 when wallet state is Closing
 ✓ should revert
 when wallet state is Closed
 ✓ should revert
 when wallet state is Terminated

 ✓ should revert
 when transaction fee is too high
 ✓ should revert
 when transaction amount is not distributed evenly
 ✓ should revert
 when the output vector contains P2SH output
 ✓ should revert
 when the output vector does not only reference 20-byte hashes
 ✓ should revert
 when the single input doesn't point to the wallet's main UTXO
 ✓ should revert
 when input count is other than one
 ✓ should revert
 when main UTXO data are invalid
 ✓ should revert
 when there is no main UTXO for the given wallet
 ✓ should revert
 when transaction proof is not valid
 when input vector is not valid
 ✓ should revert
 when output vector is not valid
 ✓ should revert
 when transaction is not on same level of merkle tree as coinbase
 ✓ should revert
 when merkle proof is not valid
 ✓ should revert
 when coinbase merkle proof is not valid
 ✓ should revert
 when proof difficulty is not current nor previous
 ✓ should revert
 when headers chain length is not valid
 ✓ should revert
 when headers chain is not valid
 ✓ should revert
 when the work in the header is insufficient
 ✓ should revert
 when accumulated difficulty in headers chain is insufficient
Warning: Potentially unsafe deployment of BridgeStub

 You are using the `unsafeAllow.external-library-linking` flag to include external libraries.
 Make sure you have manually checked that the linked libraries are upgrade safe.

 ✓ should revert
 when transaction data is limited to 64 bytes
 ✓ should revert
 notifyMovingFundsTimeout
 when source wallet is in the MovingFunds state
 when the moving funds process has timed out
 ✓ should switch the wallet to Terminated state
 ✓ should emit WalletTerminated event
 ✓ should call ECDSA Wallet Registry's closeWallet function
 ✓ should call the ECDSA wallet registry's seize function
 ✓ should emit MovingFundsTimedOut event
 when the moving funds process has not timed out
 ✓ should revert
 when source wallet is not in the MovingFunds state
 when the source wallet is in the Unknown state
 ✓ should revert
 when the source wallet is in the Live state
 ✓ should revert
 when the source wallet is in the Closing state
 ✓ should revert
 when the source wallet is in the Closed state
 ✓ should revert
 when the source wallet is in the Terminated state
 ✓ should revert
 notifyMovingFundsBelowDust
 when the wallet is in the MovingFunds state
 when the main UTXO parameter is valid
 when the balance is below the dust threshold
 ✓ should change wallet's state to Closing
 ✓ should set the wallet's closing started timestamp

 ✓ should emit WalletClosing event
 ✓ should emit MovingFundsBelowDustReported event
 when the balance is not below the dust threshold
 ✓ should revert
 when the main UTXO parameter is invalid
 ✓ should revert
 when the wallet is not in the MovingFunds state
 when wallet state is Unknown
 ✓ should revert
 when wallet state is Live
 ✓ should revert
 when wallet state is Closing
 ✓ should revert
 when wallet state is Closed
 ✓ should revert
 when wallet state is Terminated
 ✓ should revert
 submitMovedFundsSweepProof
 when transaction proof is valid
 when there is only one output
 when the single output is 20-byte
 when single output is either P2PKH or P2WPKH
 when sweeping wallet is either in the Live or MovingFunds state
 when sweeping wallet is in the Live state
 when main UTXO data are valid
 when transaction fee does not exceed the sweep transaction maximum fee
 when the sweeping wallet has no main UTXO set
 when there is a single input referring to a Pending sweep request
 ✓ should mark the sweep request as processed
 ✓ should decrease the sweeping wallet's pending requests count
 ✓ should set the transaction output as new sweeping wallet main UTXO
 ✓ should emit the MovedFundsSwept event
 when the single input does not refer to a Pending sweep request
 when the single input refers to an Unknown sweep request
 ✓ should revert
 when the single input refers to a Processed sweep request
 ✓ should revert
 when the single input refers to a TimedOut sweep request
 ✓ should revert
 when the single input does refer to a Pending sweep request that belongs to
another wallet
 ✓ should revert
 when the number of inputs is other than one
 ✓ should revert
 when the sweeping wallet has a main UTXO set
 when the first input refers to a Pending sweep request and the second input
refers to the sweeping wallet main UTXO
 ✓ should mark the sweep request as processed
 ✓ should decrease the sweeping wallet's pending requests count
 ✓ should set the transaction output as new sweeping wallet main UTXO
 ✓ should emit the MovedFundsSwept event
 ✓ should mark the current sweeping wallet main UTXO as correctly spent
 when the first input refers to the sweeping wallet main UTXO and the second input
refers to a Pending sweep request
 ✓ should revert
 when the first input does not refer to a Pending sweep request and the second
input refers to the sweeping wallet main UTXO
 when the first input refers to an Unknown sweep request
 ✓ should revert
 when the first input refers to a Processed sweep request
 ✓ should revert
(node:4571) PromiseRejectionHandledWarning: Promise rejection was handled asynchronously (rejection id:
12)
 when the first input refers to a TimedOut sweep request
 ✓ should revert
 when the first input refers to a Pending sweep request that belongs to another
wallet and the second input refers to the sweeping wallet main UTXO
 ✓ should revert
 when the first input refers to a Pending sweep request and the second input does
not refer to the sweeping wallet main UTXO
 ✓ should revert
 when the number of inputs is other than two

 ✓ should revert
 when transaction fee exceeds the sweep transaction maximum fee
 ✓ should revert
 when main UTXO data are invalid
 ✓ should revert
 when sweeping wallet is in the MovingFunds state
 ✓ should succeed
 when sweeping wallet is neither in the Live nor MovingFunds state
 when sweeping wallet is in the Unknown state
 ✓ should revert
 when sweeping wallet is in the Closing state
 ✓ should revert
 when sweeping wallet is in the Closed state
 ✓ should revert
 when sweeping wallet is in the Terminated state
 ✓ should revert
 when single output is neither P2PKH nor P2WPKH
 ✓ should revert
 when the single output is not 20-byte
 ✓ should revert
 when output count is other than one
 ✓ should revert
 when transaction proof is not valid
 when input vector is not valid
 ✓ should revert
 when output vector is not valid
 ✓ should revert
 when transaction is not on same level of merkle tree as coinbase
 ✓ should revert
 when merkle proof is not valid
 ✓ should revert
 when coinbase merkle proof is not valid
 ✓ should revert
 when proof difficulty is not current nor previous
 ✓ should revert
 when headers chain length is not valid
 ✓ should revert
 when headers chain is not valid
 ✓ should revert
 when the work in the header is insufficient
 ✓ should revert
 when accumulated difficulty in headers chain is insufficient
Warning: Potentially unsafe deployment of BridgeStub

 You are using the `unsafeAllow.external-library-linking` flag to include external libraries.
 Make sure you have manually checked that the linked libraries are upgrade safe.

 ✓ should revert
 when transaction data is limited to 64 bytes
 ✓ should revert
 notifyMovedFundsSweepTimeout
 when moved funds sweep request is in the Pending state
 when moved funds sweep request has timed out
 when the wallet is either in the Live or MovingFunds state
 when the wallet is in the Live state but the wallet is not the active one
 ✓ should switch the moved funds sweep request to the TimedOut state
 ✓ should decrease the number of pending moved funds sweep requests for the given wallet
 ✓ should switch the wallet to Terminated state
 ✓ should emit WalletTerminated event
 ✓ should call ECDSA Wallet Registry's closeWallet function
 ✓ should call the ECDSA wallet registry's seize function
 ✓ should emit MovedFundsSweepTimedOut event
 ✓ should decrease the live wallets count
 ✓ should not unset the active wallet
 when the wallet is in the Live state and the wallet is the active one
 ✓ should switch the moved funds sweep request to the TimedOut state
 ✓ should decrease the number of pending moved funds sweep requests for the given wallet
 ✓ should switch the wallet to Terminated state
 ✓ should emit WalletTerminated event
 ✓ should call ECDSA Wallet Registry's closeWallet function
 ✓ should call the ECDSA wallet registry's seize function
 ✓ should emit MovedFundsSweepTimedOut event

 ✓ should decrease the live wallets count
 ✓ should unset the active wallet
 when the wallet is in the MovingFunds state
 ✓ should switch the moved funds sweep request to the TimedOut state
 ✓ should decrease the number of pending moved funds sweep requests for the given wallet
 ✓ should switch the wallet to Terminated state
 ✓ should emit WalletTerminated event
 ✓ should call ECDSA Wallet Registry's closeWallet function
 ✓ should call the ECDSA wallet registry's seize function
 ✓ should emit MovedFundsSweepTimedOut event
 when the wallet is in the Terminated state
 ✓ should switch the moved funds sweep request to the TimedOut state
 ✓ should decrease the number of pending moved funds sweep requests for the given wallet
 ✓ should not change the wallet state
 when the wallet is neither in the Live nor MovingFunds nor Terminated state
 when the wallet is in the Unknown state
 ✓ should revert
 when the wallet is in the Closing state
 ✓ should revert
 when the wallet is in the Closed state
 ✓ should revert
 when moved funds sweep request has not timed out yet
 ✓ should revert
 when moved funds sweep request is not in the Pending state
 when moved funds sweep request is in the Unknown state
 ✓ should revert
 when moved funds sweep request is in the Processed state
 ✓ should revert
 when moved funds sweep request is in the TimedOut state
 ✓ should revert

 Bridge - Parameters
 updateDepositParameters
 when caller is the contract guvnor
 when all new parameter values are correct
 ✓ should set correct values
 ✓ should emit DepositParametersUpdated event
 ✓ should emit DepositParametersUpdated event
 ✓ should emit DepositParametersUpdated event
 ✓ should emit DepositParametersUpdated event
 when new deposit dust threshold is zero
 ✓ should revert
 when new deposit dust threshold is same as deposit TX max fee
 ✓ should revert
 when new deposit dust threshold is lower than deposit TX max fee
 ✓ should revert
 when new deposit transaction max fee is zero
 ✓ should revert
 when caller is not the contract guvnor
 ✓ should revert
 ✓ should revert
 ✓ should revert
 ✓ should revert
 updateRedemptionParameters
 when caller is the contract guvnor
 when all new parameter values are correct
 ✓ should set correct values
 ✓ should emit RedemptionParametersUpdated event
 ✓ should emit RedemptionParametersUpdated event
 ✓ should emit RedemptionParametersUpdated event
 ✓ should emit RedemptionParametersUpdated event
 ✓ should emit RedemptionParametersUpdated event
 ✓ should emit RedemptionParametersUpdated event
 ✓ should emit RedemptionParametersUpdated event
 when new redemption dust threshold is not greater than moving funds dust threshold
 ✓ should revert
 when new redemption dust threshold is same as redemption tx max fee
 ✓ should revert
 when new redemption dust threshold is lower than redemption tx max fee
 ✓ should revert
 when new redemption transaction max fee is zero
 ✓ should revert

 when new redemption transaction max total fee is lesser than the redemption transaction per-
request max fee
 ✓ should revert
 when new redemption timeout is zero
 ✓ should revert
 when new redemption timeout notifier reward multiplier is greater than 100
 ✓ should revert
 when caller is not the contract guvnor
 ✓ should revert
 ✓ should revert
 ✓ should revert
 ✓ should revert
 ✓ should revert
 ✓ should revert
 ✓ should revert
 updateMovingFundsParameters
 when caller is the contract guvnor
 when all new parameter values are correct
 ✓ should set correct values
 ✓ should emit MovingFundsParametersUpdated event
 ✓ should emit MovingFundsParametersUpdated event
 ✓ should emit MovingFundsParametersUpdated event
 ✓ should emit MovingFundsParametersUpdated event
 ✓ should emit MovingFundsParametersUpdated event
 ✓ should emit MovingFundsParametersUpdated event
 ✓ should emit MovingFundsParametersUpdated event
 ✓ should emit MovingFundsParametersUpdated event
 ✓ should emit MovingFundsParametersUpdated event
 ✓ should emit MovingFundsParametersUpdated event
 ✓ should emit MovingFundsParametersUpdated event
 when new moving funds transaction max total fee is zero
 ✓ should revert
 when new moving funds dust threshold is zero
 ✓ should revert
 when new moving funds dust threshold is not lower than redemption dust threshold
 ✓ should revert
 when new moving funds timeout reset delay is zero
 ✓ should revert
 when new moving funds timeout is not greater than its reset delay
 ✓ should revert
 when new moved funds sweep timeout is zero
 ✓ should revert
 when new moved funds sweep timeout notifier reward multiplier is greater than 100
 ✓ should revert
 when caller is not the contract guvnor
 ✓ should revert
 updateWalletParameters
 when caller is the contract guvnor
 when all new parameter values are correct
 ✓ should set correct values
 ✓ should emit WalletParametersUpdated event
 ✓ should emit WalletParametersUpdated event
 ✓ should emit WalletParametersUpdated event
 ✓ should emit WalletParametersUpdated event
 ✓ should emit WalletParametersUpdated event
 ✓ should emit WalletParametersUpdated event
 ✓ should emit WalletParametersUpdated event
 when new creation maximum BTC balance is not greater than the creation minimum BTC balance
 ✓ should revert
 when new maximum BTC transfer is zero
 ✓ should revert
 when new closing period is zero
 ✓ should revert
 when caller is not the contract guvnor
 ✓ should revert
 updateFraudParameters
 when caller is the contract guvnor
 when all new parameter values are correct
 ✓ should set correct values
 ✓ should emit FraudParametersUpdated event
 ✓ should emit FraudParametersUpdated event
 ✓ should emit FraudParametersUpdated event

 ✓ should emit FraudParametersUpdated event
 when new fraud challenge defeat timeout is zero
 ✓ should revert
 when new fraud notifier reward multiplier is greater than 100
 ✓ should revert
 when caller is not the contract guvnor
 ✓ should revert
 updateTreasury
 when caller is the contract guvnor
 when the new treasury address is non-zero
 ✓ should set the new treasury address
 ✓ should emit TreasuryUpdated event
 when the new treasury address is zero
 ✓ should revert
 when caller is not the contract guvnor
 ✓ should revert
 setRedemptionWatchtower
 when caller is not the contract guvnor
 ✓ should revert
 when caller is the contract guvnor
 when the watchtower address is already set
 ✓ should revert
 when the watchtower address is not set yet
 when the watchtower address is zero
 ✓ should revert
 when the watchtower address is non-zero
 ✓ should set the watchtower address
 ✓ should emit RedemptionWatchtowerSet event

 Bridge - Redemption
 requestRedemption
 when redemption watchtower is not set
 when wallet state is Live
 when there is a main UTXO for the given wallet
 when main UTXO data are valid
 when redeemer output script is standard type
 when redeemer output script does not point to the wallet public key hash
 when amount is not below the dust threshold
 when there is no pending request for the given redemption key
 when wallet has sufficient funds
 when redeemer made a sufficient allowance in Bank
 when redeemer output script is P2WPKH
 ✓ should increase the wallet's pending redemptions value
 ✓ should store the redemption request
 ✓ should emit RedemptionRequested event
 ✓ should take the right balance from Bank
 when redeemer output script is P2WSH
 ✓ should succeed
 when redeemer output script is P2PKH
 ✓ should succeed
 when redeemer output script is P2SH
 ✓ should succeed
 when redemption treasury fee is zero
 ✓ should store the redemption request with zero fee
 when redeemer has not made a sufficient allowance in Bank
 ✓ should revert
 when wallet has insufficient funds
 ✓ should revert
 when there is a pending request for the given redemption key
 ✓ should revert
 when amount is below the dust threshold
 ✓ should revert
 when redeemer output script points to the wallet public key hash
 ✓ should revert
 when redeemer output script is not standard type
 ✓ should revert
 when main UTXO data are invalid
 ✓ should revert
 when there is no main UTXO for the given wallet
 ✓ should revert
 when wallet state is other than Live
 when wallet state is Unknown

 ✓ should revert
 when wallet state is MovingFunds
 ✓ should revert
 when wallet state is Closing
 ✓ should revert
 when wallet state is Closed
 ✓ should revert
 when wallet state is Terminated
 ✓ should revert
 when redemption watchtower is set
 when redemption watchtower considers the redemption as unsafe
 ✓ should revert
 when redemption watchtower considers the redemption as safe
 ✓ should not revert
 receiveBalanceApproval
 when called via Bank.approveBalanceAndCall
 when wallet state is Live
 when there is a main UTXO for the given wallet
 when main UTXO data are valid
 when redeemer output script is standard type
 when redeemer output script does not point to the wallet public key hash
 when amount is not below the dust threshold
 when redeemer output script is P2WPKH
 ✓ should increase the wallet's pending redemptions value
 ✓ should store the redemption request
 ✓ should emit RedemptionRequested event
 ✓ should take the right balance from Bank
 when called directly
 ✓ should revert
 submitRedemptionProof
 when transaction proof is valid
 when there is a main UTXO for the given wallet
 when main UTXO data are valid
 when there is only one input
 when the single input points to the wallet's main UTXO
 when wallet state is Live
 when the total transaction fee is not too high
 when there is only one output
 when the single output is a pending requested redemption
 ✓ should close processed redemption request
 ✓ should delete the wallet's main UTXO
 ✓ should mark the previous main UTXO as spent
 ✓ should decrease the wallet's pending redemptions value
 ✓ should decrease Bridge's balance in Bank
 ✓ should not transfer anything to the treasury
 ✓ should not change redeemer balance in any way
 when the single output is a non-reported timed out requested redemption
 ✓ should close processed redemption request
 ✓ should delete the wallet's main UTXO
 ✓ should mark the previous main UTXO as spent
 ✓ should decrease the wallet's pending redemptions value
 ✓ should decrease Bridge's balance in Bank
 ✓ should not transfer anything to the treasury
 ✓ should not change redeemer balance in any way
 when the single output is a reported timed out requested redemption
 ✓ should remove the timed out request from the contract state
 ✓ should delete the wallet's main UTXO
 ✓ should mark the previous main UTXO as spent
 ✓ should not change the wallet's pending redemptions value
 ✓ should not change Bridge's balance in Bank
 ✓ should not transfer anything to the treasury
 ✓ should not change redeemer balance in any way
 when the single output is a pending requested redemption but redeemed amount is
wrong
 ✓ should revert
 when the single output is a reported timed out requested redemption but amount is
wrong
 ✓ should revert
 when the single output is a legal P2PKH change with a non-zero value
 ✓ should revert
 when the single output is a legal P2WPKH change with a non-zero value
 ✓ should revert

 when the single output is an illegal P2SH change with a non-zero value
 ✓ should revert
 when the single output is a change with a zero as value
 ✓ should revert
(node:4571) PromiseRejectionHandledWarning: Promise rejection was handled asynchronously (rejection id:
14)
 when the single output is a non-requested redemption to an arbitrary script
 ✓ should revert
 when the single output is provably unspendable OP_RETURN
 ✓ should revert
 when there are multiple outputs
 when output vector consists only of pending requested redemptions
 ✓ should close processed redemption requests
 ✓ should delete the wallet's main UTXO
 ✓ should mark the previous main UTXO as spent
 ✓ should decrease the wallet's pending redemptions value
 ✓ should decrease Bridge's balance in Bank
 ✓ should not transfer anything to the treasury
 ✓ should not change redeemers balances in any way
 when output vector consists of pending requested redemptions and a non-zero change
 ✓ should close processed redemption requests
 ✓ should update the wallet's main UTXO
 ✓ should mark the previous main UTXO as spent
 ✓ should decrease the wallet's pending redemptions value
 ✓ should decrease Bridge's balance in Bank
 ✓ should transfer collected treasury fee
 ✓ should not change redeemers balances in any way
 when output vector consists only of reported timed out requested redemptions
 ✓ should remove the timed out requests from the contract state
 ✓ should delete the wallet's main UTXO
 ✓ should mark the previous main UTXO as spent
 ✓ should not change the wallet's pending redemptions value
 ✓ should not change Bridge's balance in Bank
 ✓ should not transfer anything to the treasury
 ✓ should not change redeemers balances in any way
 when output vector consists of reported timed out requested redemptions and a non-
zero change
 ✓ should remove the timed out requests from the contract state
 ✓ should update the wallet's main UTXO
 ✓ should mark the previous main UTXO as spent
 ✓ should not change the wallet's pending redemptions value
 ✓ should not change Bridge's balance in Bank
 ✓ should not transfer anything to the treasury
 ✓ should not change redeemers balances in any way
 when output vector consists of pending requested redemptions and reported timed out
requested redemptions
 ✓ should remove the timed out requests from the contract state
 ✓ should close processed redemption requests
 ✓ should delete the wallet's main UTXO
 ✓ should mark the previous main UTXO as spent
 ✓ should decrease the wallet's pending redemptions value
 ✓ should decrease Bridge's balance in Bank
 ✓ should not transfer anything to the treasury
 ✓ should not change redeemers balances in any way
 when output vector consists of pending requested redemptions, reported timed out
requested redemptions and a non-zero change
 ✓ should remove the timed out requests from the contract state
 ✓ should close processed redemption requests
 ✓ should update the wallet's main UTXO
 ✓ should mark the previous main UTXO as spent
 ✓ should decrease the wallet's pending redemptions value
 ✓ should decrease Bridge's balance in Bank
 ✓ should transfer collected treasury fee
 ✓ should not change redeemers balances in any way
 when output vector contains a pending requested redemption with wrong amount
redeemed
 ✓ should revert
 when output vector contains a reported timed out requested redemption with wrong
amount redeemed
 ✓ should revert
 when output vector contains a non-zero P2SH change output
 ✓ should revert

 when output vector contains multiple non-zero change outputs
 ✓ should revert
 when output vector contains one change but with zero as value
 ✓ should revert
 when output vector contains a non-requested redemption to an arbitrary script hash
 ✓ should revert
 when output vector contains a provably unspendable OP_RETURN output
 ✓ should revert
 when the total transaction fee is too high
 ✓ should revert
 when wallet state is MovingFunds
 ✓ should succeed
 when wallet state is neither Live nor MovingFunds
 when wallet state is Unknown
 ✓ should revert
 when wallet state is Closing
 ✓ should revert
 when wallet state is Closed
 ✓ should revert
 when wallet state is Terminated
 ✓ should revert
 when the single input doesn't point to the wallet's main UTXO
 ✓ should revert
 when input count is other than one
 ✓ should revert
 when main UTXO data are invalid
 ✓ should revert
 when there is no main UTXO for the given wallet
 ✓ should revert
 when transaction proof is not valid
 when input vector is not valid
 ✓ should revert
 when output vector is not valid
 ✓ should revert
 when transaction is not on same level of merkle tree as coinbase
 ✓ should revert
 when merkle proof is not valid
 ✓ should revert
 when coinbase merkle proof is not valid
 ✓ should revert
 when proof difficulty is not current nor previous
 ✓ should revert
 when headers chain length is not valid
 ✓ should revert
 when headers chain is not valid
 ✓ should revert
 when the work in the header is insufficient
 ✓ should revert
 when accumulated difficulty in headers chain is insufficient
Warning: Potentially unsafe deployment of BridgeStub

 You are using the `unsafeAllow.external-library-linking` flag to include external libraries.
 Make sure you have manually checked that the linked libraries are upgrade safe.

 ✓ should revert
 when transaction data is limited to 64 bytes
 ✓ should revert
 notifyRedemptionTimeout
 when redemption request exists
 when the redemption request has timed out
 when the wallet is in Live state
 when the wallet is the active wallet
 ✓ should update the wallet's pending redemptions value
 ✓ should return the requested amount of tokens to the redeemer
 ✓ should remove the request from the pending redemptions
 ✓ should add the request to the timed-out redemptions
 ✓ should change the wallet's state to MovingFunds
 ✓ should set the wallet's move funds requested timestamp
 ✓ should emit WalletMovingFunds event
 ✓ should delete the active wallet public key hash
 ✓ should call the ECDSA wallet registry's seize function
 ✓ should emit RedemptionTimedOut event

 ✓ should decrease the live wallets counter
 when the wallet is not the active wallet
 ✓ should not delete the active wallet public key hash
 when the wallet is in MovingFunds state
 ✓ should update the wallet's pending redemptions value
 ✓ should return the requested amount of tokens to the redeemer
 ✓ should remove the request from the pending redemptions
 ✓ should add the request to the timed-out redemptions
 ✓ should not change wallet state
 ✓ should call the ECDSA wallet registry's seize function
 ✓ should emit RedemptionTimedOut event
 when the wallet is in Terminated state
 ✓ should update the wallet's pending redemptions value
 ✓ should remove the request from the pending redemptions
 ✓ should add the request to the timed-out redemptions
 ✓ should not change wallet state
 ✓ should emit RedemptionTimedOut event
 ✓ should return the requested amount of tokens to the redeemer
 ✓ should not call the ECDSA wallet registry's seize function
 when the wallet is neither in Live, MovingFunds nor Terminated state
 when wallet state is Unknown
 ✓ should revert
 when wallet state is Closing
 ✓ should revert
 when wallet state is Closed
 ✓ should revert
 when the redemption request has not timed out
 ✓ should revert
 when redemption request does not exist
 ✓ should revert
 notifyRedemptionVeto
 when the caller is not the redemption watchtower
 ✓ should revert
 when the caller is the redemption watchtower
 when the redemption does not exist
 ✓ should revert
 when the redemption exists
 ✓ should update the wallet's pending redemptions value
 ✓ should remove the request from the pending redemptions
 ✓ should transfer the requested amount of tokens to the watchtower

 Bridge - Vaults
 isVaultTrusted
 ✓ should not trust a vault by default
 setVaultStatus
 when called not by the governance
 ✓ should revert
 ✓ should revert
 when called by the governance
 when setting vault status as trusted
 ✓ should correctly update vault status
 ✓ should emit VaultStatusUpdated event
 when setting vault status as no longer trusted
 ✓ should correctly update vault status
 ✓ should emit VaultStatusUpdated event

 Bridge - Wallets
 requestNewWallet
 when called by a third party
 when wallet creation is not in progress
 when active wallet is not set
 ✓ should emit NewWalletRequested event
 ✓ should call ECDSA Wallet Registry's requestNewWallet function
 when active wallet is set
 when active wallet has a main UTXO set
 when the active wallet main UTXO data are valid
 when wallet creation conditions are met
 when active wallet is old enough and its balance is greater or equal the minimum BTC
balance threshold
 ✓ should emit NewWalletRequested event
 ✓ should call ECDSA Wallet Registry's requestNewWallet function
 when active wallet is not old enough but its balance is greater or equal the maximum

BTC balance threshold
 ✓ should emit NewWalletRequested event
 ✓ should call ECDSA Wallet Registry's requestNewWallet function
 when active wallet is not old enough and its balance is greater or equal the minimum but
lesser than the maximum BTC balance threshold
 ✓ should revert
(node:4571) PromiseRejectionHandledWarning: Promise rejection was handled asynchronously (rejection id:
16)
 when active wallet is old enough but its balance is lesser than the minimum BTC balance
threshold
 ✓ should revert
(node:4571) PromiseRejectionHandledWarning: Promise rejection was handled asynchronously (rejection id:
17)
 when the active wallet main UTXO data are invalid
 ✓ should revert
 when active wallet has no main UTXO set
 when the minimum BTC balance threshold is non-zero
 ✓ should revert
 when the minimum BTC balance threshold is non-zero
 ✓ should revert
 when the minimum BTC balance threshold is zero
 when wallet creation conditions are met
 ✓ should emit NewWalletRequested event
 ✓ should call ECDSA Wallet Registry's requestNewWallet function
 when wallet creation is already in progress
 when wallet creation state is AWAITING_SEED
 ✓ should revert
 when wallet creation state is AWAITING_RESULT
 ✓ should revert
 when wallet creation state is CHALLENGE
 ✓ should revert
 __ecdsaWalletCreatedCallback
 when called by a third party
 ✓ should revert
 when called by the ECDSA Wallet Registry
 when called with a valid ECDSA Wallet details
 ✓ should register ECDSA wallet reference
 ✓ should transition wallet to Live state
 ✓ should set the created at timestamp
 ✓ should set the wallet as the active one
 ✓ should emit NewWalletRegistered event
 ✓ should increase the live wallets counter
 when called with the ECDSA Wallet already registered
 with unique wallet ID and unique public key
 ✓ should not revert
 with duplicated wallet ID and unique public key
 ✓ should not revert
 with unique wallet ID, unique public key X and duplicated public key Y
 ✓ should not revert
 with unique wallet ID, unique public key Y and duplicated public key X
 ✓ should not revert
 with unique wallet ID and duplicated public key
 ✓ should revert
 with duplicated wallet ID and duplicated public key
 ✓ should revert
 __ecdsaWalletHeartbeatFailedCallback
 when called by the ECDSA Wallet Registry
 when wallet is in Live state
 when wallet balance is zero
 when wallet is the active one
 ✓ should change wallet's state to Closing
 ✓ should set the wallet's closing started timestamp
 ✓ should emit WalletClosing event
 ✓ should unset the active wallet
 ✓ should decrease the live wallets counter
 when wallet is not the active one
 ✓ should change wallet's state to Closing
 ✓ should set the wallet's closing started timestamp
 ✓ should emit WalletClosing event
 ✓ should not unset the active wallet
 ✓ should decrease the live wallets counter
 when wallet balance is greater than zero

 when wallet is the active one
 ✓ should change wallet's state to MovingFunds
 ✓ should set move funds requested at timestamp
 ✓ should emit WalletMovingFunds event
 ✓ should unset the active wallet
 ✓ should decrease the live wallets counter
 when wallet is not the active one
 ✓ should change wallet's state to MovingFunds
 ✓ should set move funds requested at timestamp
 ✓ should emit WalletMovingFunds event
 ✓ should not unset the active wallet
 ✓ should decrease the live wallets counter
 when wallet is not in Live state
 when wallet state is Unknown
 ✓ should revert
 when wallet state is MovingFunds
 ✓ should revert
 when wallet state is Closing
 ✓ should revert
 when wallet state is Closed
 ✓ should revert
 when wallet state is Terminated
 ✓ should revert
 when called by a third party
 ✓ should revert
 notifyWalletCloseable
 when the reported wallet is not the active one
 when wallet is in Live state
 when wallet reached the maximum age
 when wallet balance is zero
 ✓ should change wallet's state to Closing
 ✓ should set the wallet's closing started timestamp
 ✓ should emit WalletClosing event
 ✓ should decrease the live wallets counter
 when wallet balance is greater than zero
 ✓ should change wallet's state to MovingFunds
 ✓ should set move funds requested at timestamp
 ✓ should emit WalletMovingFunds event
 ✓ should decrease the live wallets counter
 when wallet did not reach the maximum age but their balance is lesser than the minimum
threshold
 when wallet balance is zero
 ✓ should change wallet's state to Closing
 ✓ should set the wallet's closing started timestamp
 ✓ should emit WalletClosing event
 ✓ should decrease the live wallets counter
 when wallet balance is greater than zero
 ✓ should change wallet's state to MovingFunds
 ✓ should set move funds requested at timestamp
 ✓ should emit WalletMovingFunds event
 ✓ should decrease the live wallets counter
 when wallet did not reach the maximum age and their balance is greater or equal the minimum
threshold
 ✓ should revert
 when wallet did not reach the maximum age and invalid main UTXO data is passed
 ✓ should revert
 when wallet is not in Live state
 when wallet state is Unknown
 ✓ should revert
 when wallet state is MovingFunds
 ✓ should revert
 when wallet state is Closing
 ✓ should revert
 when wallet state is Closed
 ✓ should revert
 when wallet state is Terminated
 ✓ should revert
 when the reported wallet is the active one
 ✓ should revert
 notifyWalletClosingPeriodElapsed
 when the wallet is in the Closing state
 when closing period has elapsed

 ✓ should set wallet state to Closed
 ✓ should emit WalletClosed event
 ✓ should call the ECDSA wallet registry's closeWallet function
 when closing period has not elapsed yet
 ✓ should revert
 when the wallet is not in the Closing state
 when wallet state is Unknown
 ✓ should revert
 when wallet state is Live
 ✓ should revert
 when wallet state is MovingFunds
 ✓ should revert
 when wallet state is Closed
 ✓ should revert
 when wallet state is Terminated
 ✓ should revert

 Deployment
 Bridge
 ✓ should set Bridge proxy admin
 ✓ should set ProxyAdmin owner
 ✓ should set Bridge implementation
 ✓ should set Bridge implementation in ProxyAdmin
 ✓ should set implementation address different than proxy address
 ✓ should set Bridge governance
 ✓ should revert when initialize called again
 BridgeGovernance
 ✓ should set owner
 WalletRegistry
 ✓ should set walletOwner
 Bank
 ✓ should set Bridge reference
 ✓ should set Bank owner
 TBTCVault
 ✓ should set Bank reference
 ✓ should set TBTC reference
 ✓ should set TBTCVault owner
 MaintainerProxy
 ✓ should set Bridge reference
 ✓ should set ReimbursementPool reference
 ✓ should set MaintainerProxy owner
 ReimbursementPool
 ✓ should authorize MaintainerProxy in ReimbursementPool
 ✓ should set ReimbursementPool owner
 VendingMachine
 ✓ should set vendingMachineUpgradeInitiator
 ✓ should set unmintFeeUpdateInitiator
 ✓ should set VendingMachine owner

 EcdsaLib
 compressPublicKey
 with valid uncompressed public key
 ✓ with even Y
 ✓ with odd Y
 ✓ with leading zeros
 ✓ with trailing zeros

 Heartbeat
 when the message is empty
 ✓ should return false
 when the message has less than 16 bytes
 ✓ should return false
 when the message has more than 16 bytes
 ✓ should return false
 when the message has 16 bytes
 when the message does not have the required prefix
 ✓ should return false
 when the message has the required prefix
 ✓ should return true

 RedemptionWatchtower
 enableWatchtower

 when called not by the owner
 ✓ should revert
 when called by the owner
 when already enabled
 ✓ should revert
 when not enabled yet
 when manager address is zero
 ✓ should revert
 when manager address is non-zero
 ✓ should set the enabledAt timeout properly
 ✓ should set the watchtower manager properly
 ✓ should set initial guardians properly
 ✓ should emit WatchtowerEnabled event
 ✓ should emit GuardianAdded events
 disableWatchtower
 when the watchtower is not enabled
 ✓ should revert
 when the watchtower is enabled
 when the watchtower is disabled already
 ✓ should revert
 when the watchtower is not disabled yet
 when the watchtower lifetime is not expired
 ✓ should revert
 when the watchtower lifetime is expired
 ✓ should set the disabledAt timeout properly
 ✓ should emit WatchtowerDisabled event
 addGuardian
 when watchtower manager is not set
 ✓ should revert
 when watchtower manager is set
 when called not by the watchtower manager
 ✓ should revert
 when called by the watchtower manager
 when guardian already exists
 ✓ should revert
 when guardian does not exist
 ✓ should add the guardian properly
 ✓ should emit GuardianAdded event
 removeGuardian
 when called not by the governance
 ✓ should revert
 when called by the governance
 when guardian does not exist
 ✓ should revert
 when guardian exists
 ✓ should remove the guardian properly
 ✓ should emit GuardianRemoved event
 raiseObjection
 when called not by a guardian
 ✓ should revert
 when called by a guardian
 when redemption request is already vetoed
 ✓ should revert
 when redemption request is not vetoed yet
 when guardian already objected
 ✓ should revert
 when guardian did not object yet
 when redemption request does not exist
 ✓ should revert
 when redemption request exists
 when the requested amount is below the waived amount limit
 ✓ should revert
 when watchtower has been disabled
 ✓ should revert
 when delay period expired and request was created after mechanism initialization
 when the raised objection is the first one
 ✓ should revert
 when the raised objection is the second one
 ✓ should revert
 when the raised objection is the third one
 ✓ should revert
 when delay period expired but request was created before mechanism initialization

 when the raised objection is the first one
 ✓ should emit VetoPeriodCheckOmitted event
 ✓ should store the objection key
 ✓ should update veto state properly
 ✓ should emit ObjectionRaised event
 when the raised objection is the second one
 ✓ should emit VetoPeriodCheckOmitted event
 ✓ should store the objection key
 ✓ should update veto state properly
 ✓ should emit ObjectionRaised event
 when the raised objection is the third one
 ✓ should emit VetoPeriodCheckOmitted event
 ✓ should store the objection key
 ✓ should update veto state properly
 ✓ should emit ObjectionRaised event
 ✓ should mark the redeemer as banned
 ✓ should emit Banned event
 ✓ should emit VetoFinalized event
 ✓ should decrease wallet's pending redemptions value in the Bridge
 ✓ should remove pending redemption in the Bridge
 ✓ should transfer the redemption amount from the Bridge
 ✓ should leave a proper withdrawable amount and burn the penalty fee
 when delay period did not expire yet
 when the raised objection is the first one
 ✓ should not emit VetoPeriodCheckOmitted event
 ✓ should store the objection key
 ✓ should update veto state properly
 ✓ should emit ObjectionRaised event
 when the raised objection is the second one
 ✓ should not emit VetoPeriodCheckOmitted event
 ✓ should store the objection key
 ✓ should update veto state properly
 ✓ should emit ObjectionRaised event
 when the raised objection is the third one
 ✓ should not emit VetoPeriodCheckOmitted event
 ✓ should store the objection key
 ✓ should update veto state properly
 ✓ should emit ObjectionRaised event
 ✓ should mark the redeemer as banned
 ✓ should emit Banned event
 ✓ should emit VetoFinalized event
 ✓ should decrease wallet's pending redemptions value in the Bridge
 ✓ should remove pending redemption in the Bridge
 ✓ should transfer the redemption amount from the Bridge
 ✓ should leave a proper withdrawable amount and burn the penalty fee
 getRedemptionDelay
 when the redemption request does not exist
 ✓ should revert
 when the redemption request exists
 when the watchtower has been disabled
 ✓ should return zero as the delay
 when the watchtower has not been disabled
 when the requested amount is below the waived limit
 ✓ should return zero as the delay
 when the requested amount is not below the waived limit
 when there are no objections
 ✓ should return the default delay
 when there is one objection
 ✓ should return the level-one delay
 when there are two objections
 ✓ should return the level-two delay
 when there are three objections
 ✓ should revert
 updateWatchtowerParameters
 when called not by the watchtower manager
 ✓ should revert
 when called by the watchtower manager
 when new parameters are invalid
 when the new lifetime is lesser than the current one
 ✓ should revert
 when the new veto penalty fee is not in the proper range
 ✓ should revert

 when level-two delay is lesser than level-one delay
 ✓ should revert
 when level-one delay is lesser than default delay
 ✓ should revert
 when all new parameters are valid
 when watchtower lifetime is increased
 ✓ should emit WatchtowerParametersUpdated event
 ✓ should update the watchtower parameters
 when veto penalty is changed to to the maximum value of 5%
 ✓ should emit WatchtowerParametersUpdated event
 ✓ should update the watchtower parameters
 when veto penalty is changed to to the middle of the range
 ✓ should emit WatchtowerParametersUpdated event
 ✓ should update the watchtower parameters
 when veto penalty is changed to the minimum value of 0%
 ✓ should emit WatchtowerParametersUpdated event
 ✓ should update the watchtower parameters
 when veto freeze period is changed to a non-zero value
 ✓ should emit WatchtowerParametersUpdated event
 ✓ should update the watchtower parameters
 when veto freeze period is changed to 0
 ✓ should emit WatchtowerParametersUpdated event
 ✓ should update the watchtower parameters
 when delays are changed to a non-zero value
 ✓ should emit WatchtowerParametersUpdated event
 ✓ should update the watchtower parameters
 when delays are changed to 0
 ✓ should emit WatchtowerParametersUpdated event
 ✓ should update the watchtower parameters
 when waived amount limit is changed to a non-zero value
 ✓ should emit WatchtowerParametersUpdated event
 ✓ should update the watchtower parameters
 isSafeRedemption
 when the balance owner is banned
 ✓ should return false
 when the redeemer is banned
 ✓ should return false
 when redemption key was vetoed
 ✓ should return false
 when redemption key was objected but not vetoed
 ✓ should return false
 when all safety criteria are met
 ✓ should return true
 unban
 when the caller is not the watchtower manager
 ✓ should revert
 when the caller is the watchtower manager
 when the redeemer is not banned
 ✓ should revert
 when the redeemer is banned
 ✓ should remove the redeemer from the banned list
 ✓ should emit Unbanned event
 withdrawVetoedFunds
 when the veto is not finalized
 when there are no objections at all
 ✓ should revert
 when there some objections
 ✓ should revert
 when the veto is finalized and the penalty fee is lesser than 100%
 when the caller is not the redeemer
 ✓ should revert
 when the caller is the redeemer
 when the freeze period has not expired
 ✓ should revert
 when the freeze period has expired
 when there are no funds to withdraw
 ✓ should revert
 when there are funds to withdraw
 ✓ should emit VetoedFundsWithdrawn event
 ✓ should set withdrawable amount to zero
 ✓ should transfer the funds to the redeemer
 when the veto is finalized and the penalty fee is 100%

 when the caller is not the redeemer
 ✓ should revert
 when the caller is the redeemer
 when the freeze period has not expired
 ✓ should revert
 when the freeze period has expired
 ✓ should revert

 VendingMachine - Upgrade
 upgrade process - option #1
 step#1 - TBTC v1 transfer
 ✓ should transfer all TBTC v1 to TBTCVault
 step#2 - TBTC v1 withdrawal
 ✓ should let the governance withdraw TBTC v1 from TBTCVault
 step#3 - BTC deposit
 ✓ should let the governance donate TBTCVault
 step#4 - functioning system
 ✓ should let TBTC v2 holders unmint their tokens
 ✓ should let Bank balance holders mint TBTC v2
 upgrade process - option #2
 step#1 - TBTC v1 transfer
 ✓ should transfer all TBTC v1 to TBTCVault
 step#2 - TBTC v1 transfer back to VendingMachine
 ✓ should let the governance transfer TBTC v1 back to VendingMachine
 step #3 - BTC deposit
 ✓ should let to deposit BTC into v2 Bridge
 step #4 - TBTC v2 -> v2 unminting
 ✓ should let the redeemer to unmint TBTC v2 back to TBTC v1

 VendingMachine
 mint
 when TBTC v1 owner has not enough tokens
 ✓ should revert
 when TBTC v1 owner has enough tokens
 when minting entire allowance
 ✓ should mint the same amount of TBTC v2
 ✓ should transfer TBTC v1 tokens to the VendingMachine
 ✓ should emit Minted event
 when minting part of the allowance
 ✓ should mint the same amount of TBTC v2
 ✓ should transfer TBTC v1 tokens to the VendingMachine
 ✓ should emit Minted event
 receiveApproval
 when called directly
 ✓ should revert
 when called not for TBTC v1 token
 ✓ should revert
 when called via approveAndCall
 ✓ should mint TBTC v2 to the caller
 ✓ should transfer TBTC v1 tokens to the VendingMachine
 ✓ should emit Minted event
 unmint
 when unmint fee is zero
 when TBTC v2 owner has not enough tokens
 ✓ should revert
 when TBTC v2 owner has enough tokens
 when unminting entire TBTC v2 balance
 ✓ should transfer no TBTC v2 to the VendingMachine
 ✓ should burn unminted TBTC v2 tokens
 ✓ should transfer unminted TBTC v1 tokens back to the owner
 ✓ should emit the Unminted event
 when unminting part of TBTC v2 balance
 ✓ should transfer no TBTC v2 to the VendingMachine
 ✓ should burn unminted TBTC v2 tokens
 ✓ should transfer unminted TBTC v1 tokens back to the owner
 ✓ should emit the Unminted event
 when unmint fee is non-zero
 when TBTC v2 owner has not enough tokens
 ✓ should revert
 when TBTC v2 owner has enough tokens
 when unminting entire TBTC v2 balance
 ✓ should transfer TBTC v2 fee to the VendingMachine

 ✓ should burn unminted TBTC v2 tokens
 ✓ should transfer unminted TBTC v1 tokens back to the owner
 ✓ should emit the Unminted event
 when unminting part of TBTC v2 balance
 ✓ should transfer TBTC v2 fee to the VendingMachine
 ✓ should burn unminted TBTC v2 tokens
 ✓ should transfer unminted TBTC v1 tokens back to the owner
 ✓ should emit the Unminted event
 withdrawFees
 when caller is not the owner
 ✓ should revert
 when caller is the owner
 ✓ should withdraw the provided amount of fees
 ✓ should leave the rest of fees in VendingMachine
 initiateUnmintFeeUpdate
 when caller is a third party
 ✓ should revert
 when caller is the contract owner
 ✓ should revert
 when caller is the update initiator
 ✓ should not update the unmint fee
 ✓ should start the update initiation time
 ✓ should set the pending new unmint fee
 ✓ should start the governance delay timer
 ✓ should emit UnmintFeeUpdateInitiated event
 finalizeUnmintFeeUpdate
 when caller is a third party
 ✓ should revert
 when caller is the update initiator
 ✓ should revert
 when caller is the owner
 when update process is not initialized
 ✓ should revert
 when update process is initialized
 when governance delay has not passed
 ✓ should revert
 when governance delay passed
 ✓ should update the unmint fee
 ✓ should emit UnmintFeeUpdated event
 ✓ should reset the governance delay timer
 ✓ should reset the pending new unmint fee
 ✓ should reset the unmint fee update initiated timestamp
 initiateVendingMachineUpgrade
 when caller is a third party
 ✓ should revert
 when caller is the contract owner
 ✓ should revert
 when caller is the upgrade initiator
 when new vending machine address is zero
 ✓ should revert
 when new vending machine address is non-zero
 ✓ should not transfer token ownership
 ✓ should start the upgrade initiation time
 ✓ should set the pending new vending machine address
 ✓ should start the governance delay timer
 ✓ should emit VendingMachineUpgradeInitiated event
 finalizeVendingMachineUpgrade
 when caller is a third party
 ✓ should revert
 when caller is the upgrade initiator
 ✓ should revert
 when caller is the owner
 when upgrade process is not initialized
 ✓ should revert
 when upgrade process is initialized
 when governance delay has not passed
 ✓ should revert
 when governance delay passed
 ✓ should transfer token ownership to the new VendingMachine
 ✓ should transfer all TBTC v1 to the new VendingMachine
 ✓ should emit VendingMachineUpgraded event
 ✓ should reset the governance delay timer

 ✓ should reset the pending new vending machine address
 ✓ should reset the vending machine update initiated timestamp
 transferUnmintFeeUpdateInitiatorRole
 when caller is the owner
 ✓ should revert
 when caller is a third party
 ✓ should revert
 when caller is the update initiator
 when new initiator is a valid address
 ✓ should transfer the role
 when new initiator is zero address
 ✓ should revert
 transferVendingMachineUpgradeInitiatorRole
 when caller is the owner
 ✓ should revert
 when caller is a third party
 ✓ should revert
 when caller is the update initiator
 when new initiator is a valid address
 ✓ should transfer the role
 when new initiator is zero address
 ✓ should revert
 unmintFeeFor
 when unmint fee is non-zero
 ✓ should return a correct portion of the amount to unmint
 when unmint fee is zero
 ✓ should return zero

 VendingMachineV2
 exchange
 when tBTC v1 exchanger has not enough tokens
 ✓ should revert
 when not enough tBTC v2 was deposited
 ✓ should revert
 when exchanging entire allowance
 ✓ should exchange the same amount of tBTC v2
 ✓ should transfer tBTC v1 tokens to the VendingMachineV2
 ✓ should emit Exchanged event
 when exchanging part of the allowance
 ✓ should exchange the same amount of tBTC v2
 ✓ should transfer tBTC v1 tokens to the VendingMachineV2
 ✓ should emit Exchanged event
 receiveApproval
 when called directly
 ✓ should revert
 when called not for tBTC v1 token
 ✓ should revert
 when called via approveAndCall
 ✓ should exchange tBTC v2 with the caller
 ✓ should transfer tBTC v1 tokens to the VendingMachineV2
 ✓ should emit Exchanged event
 depositTBTCV2
 when depositing entire allowance
 ✓ should transfer tBTC v2 to the VendingMachineV2
 ✓ should emit Deposited event
 when depositing part of the allowance
 ✓ should transfer tBTC v2 to the VendingMachineV2
 ✓ should emit Deposited event
 withdrawFunds
 when called by third party
 ✓ should revert
 when called by the owner
 when withdrawing tBTC v1 tokens
 ✓ should transfer tokens to the recipient
 ✓ should emit Withdrawn event
 when withdrawing tBTC v2 tokens
 ✓ should transfer tokens to the recipient
 ✓ should emit Withdrawn event

 VendingMachineV3
 exchange
 when tBTC v1 exchanger has not enough tokens

 ✓ should revert
 when not enough tBTC v2 was deposited
 ✓ should revert
 when exchanging entire allowance
 ✓ should exchange the same amount of tBTC v2
 ✓ should transfer tBTC v1 tokens to the VendingMachineV3
 ✓ should emit Exchanged event
 when exchanging part of the allowance
 ✓ should exchange the same amount of tBTC v2
 ✓ should transfer tBTC v1 tokens to the VendingMachineV3
 ✓ should emit Exchanged event
 receiveApproval
 when called directly
 ✓ should revert
 when called not for tBTC v1 token
 ✓ should revert
 when called via approveAndCall
 ✓ should exchange tBTC v2 with the caller
 ✓ should transfer tBTC v1 tokens to the VendingMachineV3
 ✓ should emit Exchanged event
 depositTBTCV2
 when depositing entire allowance
 ✓ should transfer tBTC v2 to the VendingMachineV3
 ✓ should emit Deposited event
 when depositing part of the allowance
 ✓ should transfer tBTC v2 to the VendingMachineV3
 ✓ should emit Deposited event
 recoverFunds
 when called by third party
 ✓ should revert
 when called by the owner
 when recovering tBTC v1 tokens
 ✓ should transfer tokens to the recipient
 ✓ should emit FundsRecovered event
 when recovering tBTC v2 tokens
 ✓ should revert
 when recovering other tokens
 ✓ should transfer tokens to the recipient
 ✓ should emit FundsRecovered event
 withdrawTbtcV2
 when called by a third party
 ✓ should revert
 when called by the owner
 when some tBTC v1 would be unbacked
 ✓ should revert
 when all tBTC v1 would be still backed
 ✓ should transfer tokens to the recipient
 ✓ should emit TbtcV2Withdrawn event

 WalletProposalValidator
 validateDepositSweepProposal
 when wallet is incorrect state
 when wallet state is Unknown
 ✓ should revert
 when wallet state is Closing
 ✓ should revert
 when wallet state is Closed
 ✓ should revert
 when wallet state is Terminated
 ✓ should revert
 when wallet is correct state
 when wallet state is Live
 when sweep is below the min size
 ✓ should revert
 when sweep is above the min size
 when sweep exceeds the max size
 ✓ should revert
 when sweep does not exceed the max size
 when deposit extra info length does not match
 ✓ should revert
 when deposit extra info length matches
 when proposed sweep tx fee is invalid

 when proposed sweep tx fee is zero
 ✓ should revert
 when proposed sweep tx fee is greater than the allowed
 ✓ should revert
 when proposed sweep tx fee is valid
 when there is a non-revealed deposit
 ✓ should revert
 when all deposits are revealed
 when there is an immature deposit
 ✓ should revert
 when all deposits achieved the min age
 when there is an already swept deposit
 ✓ should revert
 when all deposits are not swept yet
 when there is a deposit with invalid extra info
 when funding tx hashes don't match
 ✓ should revert
 when 20-byte funding output hash does not match
 ✓ should revert
 when 32-byte funding output hash does not match
 ✓ should revert
 when all deposits extra info are valid
 when there is a deposit that violates the refund safety margin
 ✓ should revert
 when all deposits preserve the refund safety margin
 when there is a deposit controlled by a different wallet
 ✓ should revert
 when all deposits are controlled by the same wallet
 when there is a deposit targeting a different vault
 ✓ should revert
 when all deposits targets the same vault
 when there are duplicated deposits
 ✓ should revert
 when all deposits are unique
 ✓ should succeed
 when wallet state is MovingFunds
 when sweep is below the min size
 ✓ should revert
 when sweep is above the min size
 when sweep exceeds the max size
 ✓ should revert
 when sweep does not exceed the max size
 when deposit extra info length does not match
 ✓ should revert
 when deposit extra info length matches
 when proposed sweep tx fee is invalid
 when proposed sweep tx fee is zero
 ✓ should revert
 when proposed sweep tx fee is greater than the allowed
 ✓ should revert
 when proposed sweep tx fee is valid
 when there is a non-revealed deposit
 ✓ should revert
 when all deposits are revealed
 when there is an immature deposit
 ✓ should revert
 when all deposits achieved the min age
 when there is an already swept deposit
 ✓ should revert
 when all deposits are not swept yet
 when there is a deposit with invalid extra info
 when funding tx hashes don't match
 ✓ should revert
 when 20-byte funding output hash does not match
 ✓ should revert
 when 32-byte funding output hash does not match
 ✓ should revert
 when all deposits extra info are valid
 when there is a deposit that violates the refund safety margin
 ✓ should revert
 when all deposits preserve the refund safety margin
 when there is a deposit controlled by a different wallet

 ✓ should revert
 when all deposits are controlled by the same wallet
 when there is a deposit targeting a different vault
 ✓ should revert
 when all deposits targets the same vault
 when there are duplicated deposits
 ✓ should revert
 when all deposits are unique
 ✓ should succeed
 validateRedemptionProposal
 when wallet is in incorrect state
 when wallet state is Unknown
 ✓ should revert
 when wallet state is Closing
 ✓ should revert
 when wallet state is Closed
 ✓ should revert
 when wallet state is Terminated
 ✓ should revert
 when wallet is in correct state
 when wallet state is Live
 when redemption is below the min size
 ✓ should revert
 when redemption is above the min size
 when redemption exceeds the max size
 ✓ should revert
 when redemption does not exceed the max size
 when proposed redemption tx fee is invalid
 when proposed redemption tx fee is zero
 ✓ should revert
 when proposed redemption tx fee is greater than the allowed total fee
 ✓ should revert
 when proposed redemption tx fee is valid
 when there is a non-pending request
 ✓ should revert
 when all requests are pending
 when there is an immature request
 when immaturity is caused by REDEMPTION_REQUEST_MIN_AGE violation
 ✓ should revert
 when immaturity is caused by watchtower's delay violation
 ✓ should revert
 when all requests achieved the min age
 when there is a request that violates the timeout safety margin
 ✓ should revert
 when all requests preserve the timeout safety margin
 when there is a request that incurs an unacceptable tx fee share
 when there is no fee remainder
 ✓ should revert
 when there is a fee remainder
 ✓ should revert
 when all requests incur an acceptable tx fee share
 when there are duplicated requests
 ✓ should revert
 when all requests are unique
 when watchtower is not set
 ✓ should succeed
 when watchtower is set
 ✓ should succeed
 when wallet state is MovingFunds
 when redemption is below the min size
 ✓ should revert
 when redemption is above the min size
 when redemption exceeds the max size
 ✓ should revert
 when redemption does not exceed the max size
 when proposed redemption tx fee is invalid
 when proposed redemption tx fee is zero
 ✓ should revert
 when proposed redemption tx fee is greater than the allowed total fee
 ✓ should revert
 when proposed redemption tx fee is valid
 when there is a non-pending request

 ✓ should revert
 when all requests are pending
 when there is an immature request
 when immaturity is caused by REDEMPTION_REQUEST_MIN_AGE violation
 ✓ should revert
 when immaturity is caused by watchtower's delay violation
 ✓ should revert
 when all requests achieved the min age
 when there is a request that violates the timeout safety margin
 ✓ should revert
 when all requests preserve the timeout safety margin
 when there is a request that incurs an unacceptable tx fee share
 when there is no fee remainder
 ✓ should revert
 when there is a fee remainder
 ✓ should revert
 when all requests incur an acceptable tx fee share
 when there are duplicated requests
 ✓ should revert
 when all requests are unique
 when watchtower is not set
 ✓ should succeed
 when watchtower is set
 ✓ should succeed
 validateMovingFundsProposal
 when wallet's state is not MovingFunds
 when wallet state is Unknown
 ✓ should revert
 when wallet state is Live
 ✓ should revert
 when wallet state is Closing
 ✓ should revert
 when wallet state is Closed
 ✓ should revert
 when wallet state is Terminated
 ✓ should revert
 when wallet's state is MovingFunds
 when moving funds commitment has not been submitted
 ✓ should revert
 when moving funds commitment has been submitted
 when commitment hash does not match target wallets
 ✓ should revert
 when commitment hash matches target wallets
 when no main UTXO is passed
 ✓ should revert
 when the passed main UTXO is incorrect
 ✓ should revert
 when the passed main UTXO is correct
 when source wallet BTC balance is below dust threshold
 ✓ should revert
 when source wallet BTC balance is equal to or greater that dust threshold
 when transaction fee is zero
 ✓ should revert
 when transaction fee is too high
 ✓ should revert
 when transaction fee is valid
 ✓ should pass validation
 validateMovedFundsSweepProposal
 when wallet's state is incorrect
 when wallet state is Unknown
 ✓ should revert
 when wallet state is Closing
 ✓ should revert
 when wallet state is Closed
 ✓ should revert
 when wallet state is Terminated
 ✓ should revert
 when wallet's state is correct
 when wallet state is Live
 when moved funds sweep request's state is not Pending
 ✓ should revert
 when moved funds sweep request's state is Pending

 when moved funds sweep request does not belong to the wallet
 ✓ should revert
 when moved funds sweep request belongs to the wallet
 when transaction fee is zero
 ✓ should revert
 when transaction fee is too high
 ✓ should revert
 when transaction fee is valid
 ✓ should pass validation
 when wallet state is MovingFunds
 when moved funds sweep request's state is not Pending
 ✓ should revert
 when moved funds sweep request's state is Pending
 when moved funds sweep request does not belong to the wallet
 ✓ should revert
 when moved funds sweep request belongs to the wallet
 when transaction fee is zero
 ✓ should revert
 when transaction fee is too high
 ✓ should revert
 when transaction fee is valid
 ✓ should pass validation
 validateHeartbeatProposal
 when message is not valid
 ✓ should revert
 when message is valid
 ✓ should succeed

 Integration Test - Full flow
 Check deposit and redemption flow
 when wallet is created
 when a deposit is revealed
 - should create a deposit
 when the deposit sweep proof is submitted
 - should mint TBTC tokens for the depositor
 - should increase the balance of vault in the bank
 - should update the main UTXO of the wallet
 when a redemption is requested
 - should create a pending redemption request
 - should increase the pending redemptions value of the wallet
 - should increase the balance of bridge in the bank
 when the redemption proof is submitted
 - should zero the pending redemptions value of the wallet
 - should zero the balance of bridge in the bank
 - should update the main UTXO of the wallet

 Integration Test - Slashing
 notifyFraudChallengeDefeatTimeout
 when wallet is created
 when a fraud is reported
 - should slash wallet members
 - should close the wallet in the wallet registry
 - should terminate the wallet in the bridge
 - should consume around 3 100 000 gas for Bridge.notifyMovingFundsTimeoutTx transaction
 notifyRedemptionTimeout
 when wallet is created
 when a redemption timeout is reported
 - should slash wallet members
 - should not close the wallet in the wallet registry
 - should transition the wallet in the bridge to the MovingFunds state
 - should consume around 3 150 000 gas for Bridge.notifyRedemptionTimeout transaction
 notifyMovingFundsTimeout
 when wallet is created
 when moving funds timeout is reported
 - should slash wallet members
 - should close the wallet in the wallet registry
 - should terminate the wallet in the bridge
 - should consume around 3 100 000 gas for Bridge.notifyMovingFundsTimeoutTx transaction

 Integration Test - Wallet Creation
 new wallet creation (happy path)
 - should register a new wallet in the WalletRegistry

 - should register a new wallet details in the Bridge
 - should register a new wallet as active in the Bridge
 - should consume around 94 000 gas for Bridge.requestNewWallet transaction
 - should consume around 341 000 gas for WalletRegistry.approveDkgResult transaction

 AbstractTBTCDepositor
 _initializeDeposit
 when revealed vault does not match
 ✓ should revert
 when revealed vault matches
 when deposit is rejected by the Bridge
 ✓ should revert
 when deposit is accepted by the Bridge
 ✓ should reveal the deposit to the Bridge
 ✓ should return proper values
 _finalizeDeposit
 when deposit is not initialized
 ✓ should revert
 when deposit is already finalized
 ✓ should not revert
 when deposit is initialized but not finalized yet
 when deposit is not finalized by the Bridge
 ✓ should revert
 when deposit is finalized by the Bridge
 when the deposit is swept
 ✓ should return proper values
 when the deposit is optimistically minted
 ✓ should return proper values
 _calculateTbtcAmount
 when all fees are non-zero
 ✓ should return the correct amount
 when all fees are zero
 ✓ should return the correct amount
 when one of the fees is zero
 when treasury fee is zero
 ✓ should return the correct amount
 when optimistic minting fee is zero
 ✓ should return the correct amount
 when transaction max fee is zero
 ✓ should return the correct amount
 _minDepositAmount
 ✓ returns value in TBTC token precision

 L1BitcoinDepositor
 attachL2BitcoinDepositor
 when the caller is not the owner
 ✓ should revert
 when the caller is the owner
 when the L2BitcoinDepositor is already attached
 ✓ should revert
 when the L2BitcoinDepositor is not attached
 when new L2BitcoinDepositor is zero
 ✓ should revert
 when new L2BitcoinDepositor is non-zero
 ✓ should set the l2BitcoinDepositor address properly
 updateReimbursementPool
 when the caller is not the owner
 ✓ should revert
 when the caller is the owner
 ✓ should set the reimbursementPool address properly
 ✓ should emit ReimbursementPoolUpdated event
 updateL2FinalizeDepositGasLimit
 when the caller is not the owner
 ✓ should revert
 when the caller is the owner
 ✓ should set the gas limit properly
 ✓ should emit L2FinalizeDepositGasLimitUpdated event
 updateGasOffsetParameters
 when the caller is not the owner
 ✓ should revert
 when the caller is the owner
 ✓ should set the gas offset params properly

 ✓ should emit GasOffsetParametersUpdated event
 updateReimbursementAuthorization
 when the caller is not the owner
 ✓ should revert
 when the caller is the owner
 ✓ should set the authorization properly
 ✓ should emit ReimbursementAuthorizationUpdated event
 initializeDeposit
 when the L2 deposit owner is zero
 ✓ should revert
 when the L2 deposit owner is non-zero
 when the requested vault is not TBTCVault
 ✓ should revert
 when the requested vault is TBTCVault
 when the deposit state is wrong
 when the deposit state is Initialized
 ✓ should revert
 when the deposit state is Finalized
 ✓ should revert
 when the deposit state is Unknown
 when the reimbursement pool is not set
 ✓ should reveal the deposit to the Bridge
 ✓ should set the deposit state to Initialized
 ✓ should emit DepositInitialized event
 ✓ should not store the deferred gas reimbursement
 when the reimbursement pool is set and caller is authorized
 ✓ should reveal the deposit to the Bridge
 ✓ should set the deposit state to Initialized
 ✓ should emit DepositInitialized event
 ✓ should store the deferred gas reimbursement
 when the reimbursement pool is set and caller is not authorized
 ✓ should reveal the deposit to the Bridge
 ✓ should set the deposit state to Initialized
 ✓ should emit DepositInitialized event
 ✓ should not store the deferred gas reimbursement
 finalizeDeposit
 when the deposit state is wrong
 when the deposit state is Unknown
 ✓ should revert
 when the deposit state is Finalized
 ✓ should revert
 when the deposit state is Initialized
 when the deposit is not finalized by the Bridge
 ✓ should revert
 when the deposit is finalized by the Bridge
 when normalized amount is too low to bridge
 ✓ should revert
 when normalized amount is not too low to bridge
 when payment for Wormhole Relayer is too low
 ✓ should revert
 when payment for Wormhole Relayer is not too low
 when the reimbursement pool is not set
 ✓ should set the deposit state to Finalized
 ✓ should emit DepositFinalized event
 ✓ should increase TBTC allowance for Wormhole Token Bridge
 ✓ should create a proper Wormhole token transfer
 ✓ should send transfer VAA to L2
 ✓ should not call the reimbursement pool
 when the reimbursement pool is set and caller is authorized
 ✓ should set the deposit state to Finalized
 ✓ should emit DepositFinalized event
 ✓ should increase TBTC allowance for Wormhole Token Bridge
 ✓ should create a proper Wormhole token transfer
 ✓ should send transfer VAA to L2
 ✓ should pay out proper reimbursements
 when the reimbursement pool is set and caller is not authorized
 ✓ should set the deposit state to Finalized
 ✓ should emit DepositFinalized event
 ✓ should increase TBTC allowance for Wormhole Token Bridge
 ✓ should create a proper Wormhole token transfer
 ✓ should send transfer VAA to L2
 ✓ should pay out proper reimbursements

 quoteFinalizeDeposit
 ✓ should return the correct cost

 L2BitcoinDepositor
 attachL1BitcoinDepositor
 when the caller is not the owner
 ✓ should revert
 when the caller is the owner
 when the L1BitcoinDepositor is already attached
 ✓ should revert
 when the L1BitcoinDepositor is not attached
 when new L1BitcoinDepositor is zero
 ✓ should revert
 when new L1BitcoinDepositor is non-zero
 ✓ should set the l1BitcoinDepositor address properly
 initializeDeposit
 ✓ should emit DepositInitialized event
 receiveWormholeMessages
 when the caller is not the WormholeRelayer
 ✓ should revert
 when the caller is the WormholeRelayer
 when the source chain is not the expected L1
 ✓ should revert
 when the source chain is the expected L1
 when the source address is not the L1BitcoinDepositor
 ✓ should revert
 when the source address is the L1BitcoinDepositor
 when the number of additional VAAs is not 1
 ✓ should revert
 when the number of additional VAAs is 1
 ✓ should pass the VAA to the L2WormholeGateway

 L2TBTC
 ✓ should have a name
 ✓ should have a symbol
 ✓ should have 18 decimals
 addMinter
 when called not by the owner
 ✓ should revert
 when called by the owner
 when address is a new minter
 ✓ should add address as a minter
 ✓ should emit an event
 when address is already a minter
 ✓ should revert
 when there are multiple minters
 ✓ should add them into the list
 removeMinter
 when called not by the owner
 ✓ should revert
 when called by the owner
 when address is not a minter
 ✓ should revert
 when a minter address is removed
 ✓ should take minter role from the address
 ✓ should emit an event
 when there are multiple minters
 when deleting the first minter
 ✓ should update the minters list
 when deleting the last minter
 ✓ should update the minters list
 when deleting minter from the middle of the list
 ✓ should update the minters list
 addGuardian
 when called not by the owner
 ✓ should revert
 when called by the owner
 when address is a new guardian
 ✓ should add address as a guardian
 ✓ should emit an event
 when address is already a guardian
 ✓ should revert

 when there are multiple guardians
 ✓ should add them into the list
 removeGuardian
 when called not by the owner
 ✓ should revert
 when called by the owner
 when address is not a guardian
 ✓ should revert
 when a guardian address is removed
 ✓ should take guardian role from the address
 ✓ should emit an event
 when there are multiple guardians
 when deleting the first guardian
 ✓ should update the guardians list
 when deleting the last guardian
 ✓ should update the guardians list
 when deleting guardian from the middle of the list
 ✓ should update the guardians list
 recoverERC20
 when called not by the owner
 ✓ should revert
 when called by the contract owner
 ✓ should transfer tokens to the recipient
 recoverERC721
 when called not by the owner
 ✓ should revert
 when called by the owner
 ✓ transfers token to the recipient
 pause
 when called not by a guardian
 ✓ should revert
 when called by a guardian
 ✓ should emit Paused event
 ✓ should pause mint functionality
 ✓ should pause burn functionality
 ✓ should pause burnFrom functionality
 ✓ should not pause transfers
 unpause
 when called not by the owner
 ✓ should revert
 when called by the owner
 ✓ should emit Unpaused event
 ✓ should unpause mint functionality
 ✓ should unpause burn functionality
 ✓ should unpause burnFrom functionality
 mint
 when called not by a minter
 ✓ should revert
 when called by a minter
 for a zero account
 ✓ should revert
 for a non-zero account
 ✓ should increment totalSupply
 ✓ should increment recipient balance
 ✓ should emit Transfer event
 totalSupply
 ✓ should return the total amount of tokens
 DOMAIN_SEPARATOR
 ✓ should be keccak256 of EIP712 domain struct
 balanceOf
 ✓ should return the total amount of tokens
 transfer
 ✓ should transfer the requested amount
 ✓ should emit a transfer event
 transferFrom
 ✓ should transfer the requested amount
 ✓ should emit a transfer event
 approve
 ✓ should approve the requested amount
 ✓ should emit an approval event
 burn
 ✓ should decrement account's balance

 ✓ should emit Transfer event
 burnFrom
 ✓ should decrement account's balance
 ✓ should decrement allowance
 ✓ should emit Transfer event
 permit
 ✓ should emit an approval event
 ✓ should approve the requested amount

 L2WormholeGateway
 initialization
 ✓ should set the wormhole bridge address
 ✓ should set the wormhole bridge token address
 ✓ should set the canonical tBTC address
 receiveTbtc
 when receiver is the zero address
 ✓ should revert
 when the transferred amount is zero
 ✓ should revert
 when receiver is non-zero address
 when the minting limit was not reached
 ✓ should transfer wormhole tBTC to the contract
 ✓ should mint tBTC to the receiver
 ✓ should complete transfer with the bridge
 ✓ should emit the WormholeTbtcReceived event
 ✓ should increase the minted amount counter
 when the minting limit was reached
 ✓ should transfer wormhole tBTC to the contract
 ✓ should mint tBTC to the receiver before reaching the minting limit
 ✓ should send wormhole tBTC to the receiver after reaching the minting limit
 ✓ should increase the minted amount counter
 sendTbtc
 when there is not enough wormhole tBTC
 ✓ should revert
 when there is enough wormhole tBTC
 when the receiver address is zero
 ✓ should revert
 when the amount is zero
 ✓ should revert
 when the receiver address and amount are non-zero
 when the target chain has no tBTC gateway
 ✓ should burn canonical tBTC from the caller
 ✓ should approve burned amount of wormhole tBTC to the bridge
 ✓ should sent tokens through the bridge
 ✓ should emit the WormholeTbtcSent event
 when the target chain has a tBTC gateway
 ✓ should burn canonical tBTC from the caller
 ✓ should approve burned amount of wormhole tBTC to the bridge
 ✓ should sent tokens through the bridge
 ✓ should emit the WormholeTbtcSent event
 when the amount is below dust
 ✓ should revert
 when the amount is just above the dust
 ✓ should burn canonical tBTC from the caller
 ✓ should approve burned amount of wormhole tBTC to the bridge
 ✓ should sent the entire amount through the bridge
 when the amount has a small dust
 ✓ should burn canonical tBTC from the caller after dropping dust
 ✓ should approve burned amount of wormhole tBTC to the bridge after dropping dust
 ✓ should drop the dust before sending over the bridge
 when the amount has a lot of dust
 ✓ should burn canonical tBTC from the caller after dropping dust
 ✓ should approve burned amount of wormhole tBTC to the bridge after dropping dust
 ✓ should drop the dust before sending over the bridge
 updateGatewayAddress
 when called by a third party
 ✓ should revert
 when called by the governance
 ✓ should update the gateway address
 ✓ should emit the GatewayAddressUpdated event
 when disabling gateway
 ✓ should update the gateway address

 ✓ should emit the GatewayAddressUpdated event
 updateMintingLimit
 when called by a third party
 ✓ should revert
 when called by the governance
 ✓ should update the minting limit
 ✓ should emit the MintingLimitUpdated event
 toWormholeAddress
 ✓ should convert Ethereum address into Wormhole format
 fromWormholeAddress
 ✓ should convert Wormhole address into Ethereum format

 MaintainerProxy
 requestNewWallet
 when called by an unauthorized third party
 ✓ should revert
 when called by an SPV maintainer that is not wallet maintainer
 ✓ should revert
 when called by a wallet maintainer
 ✓ should emit NewWalletRequested event
 ✓ should refund ETH
 submitDepositSweepProof
 when called by an unauthorized third party
 ✓ should revert
 when called by a wallet maintainer that is not SPV maintainer
 ✓ should revert
 when called by an SPV maintainer
 when there is only one input
 when the single input is a revealed unswept P2SH deposit
 ✓ should emit DepositSwept event
 ✓ should refund ETH
 when the single input is a revealed unswept P2WSH deposit
 ✓ should emit DepositSwept event
 ✓ should refund ETH
 when the single input is a revealed unswept deposit with a trusted vault
 ✓ should emit DepositSwept event
 ✓ should refund ETH
 when the single input is a revealed unswept deposit with a non-trusted vault
 ✓ should emit DepositSwept event
 ✓ should refund ETH
 when there are multiple inputs
 when input vector consists only of revealed unswept deposits and the expected main UTXO
 ✓ should emit DepositSwept event
 ✓ should refund ETH
 when input vector consists only of revealed unswept deposits with a trusted vault and the
expected main UTXO
 ✓ should emit DepositSwept event
 ✓ should refund ETH
 when input vector consists only of revealed unswept deposits with a non-trusted vault and the
expected main UTXO
 ✓ should emit DepositSwept event
 ✓ should refund ETH
 when input vector consists only of revealed unswept deposits with different trusted vaults and
the expected main UTXO
 ✓ should emit DepositSwept event
 ✓ should refund ETH
 when input vector consists only of revealed unswept deposits but there is no main UTXO since it
is not expected
 ✓ should emit DepositSwept event
 ✓ should refund ETH
 submitRedemptionProof
 when called by an unauthorized third party
 ✓ should revert
 when called by a wallet maintainer that is not SPV maintainer
 ✓ should revert
 when called by an SPV maintainer
 when there is only one output
 when the single output is a pending requested redemption
 ✓ should emit RedemptionsCompleted event
 ✓ should refund ETH
 when the single output is a non-reported timed out requested redemption
 ✓ should emit RedemptionsCompleted event

 ✓ should refund ETH
 when the single output is a reported timed out requested redemption
 ✓ should emit RedemptionsCompleted event
 ✓ should refund ETH
 when there are multiple outputs
 when output vector consists only of pending requested redemptions
 ✓ should emit RedemptionsCompleted event
 ✓ should refund ETH
 when output vector consists of pending requested redemptions and a non-zero change
 ✓ should emit RedemptionsCompleted event
 ✓ should refund ETH
 when output vector consists only of reported timed out requested redemptions
 ✓ should emit RedemptionsCompleted event
 ✓ should refund ETH
 when output vector consists of reported timed out requested redemptions and a non-zero change
 ✓ should emit RedemptionsCompleted event
 ✓ should refund ETH
 when output vector consists of pending requested redemptions and reported timed out requested
redemptions
 ✓ should emit RedemptionsCompleted event
 ✓ should refund ETH
 when output vector consists of pending requested redemptions, reported timed out requested
redemptions and a non-zero change
 ✓ should emit RedemptionsCompleted event
 ✓ should refund ETH
 notifyWalletCloseable
 when called by an unauthorized third party
 ✓ should revert
 when called by an SPV maintainer that is not wallet maintainer
 ✓ should revert
 when called by a wallet maintainer
 when wallet reached the maximum age
 when wallet balance is zero
 ✓ should emit WalletClosing event
 ✓ should refund ETH
 when wallet balance is greater than zero
 ✓ should emit WalletMovingFunds event
 ✓ should refund ETH
 when wallet did not reach the maximum age but their balance is lesser than the minimum threshold
 when wallet balance is zero
 ✓ should emit WalletClosing event
 ✓ should refund ETH
 when wallet balance is greater than zero
 ✓ should emit WalletMovingFunds event
 ✓ should refund ETH
 defeatFraudChallenge
 when the input is non-witness
 when the transaction has single input
 when the input is marked as correctly spent in the Bridge
 ✓ should emit FraudChallengeDefeated event
 ✓ should refund ETH
 when the transaction has multiple inputs
 when the input is marked as correctly spent in the Bridge
 ✓ should emit FraudChallengeDefeated event
 ✓ should refund ETH
 when the input is witness
 when the transaction has single input
 when the input is marked as correctly spent in the Bridge
 ✓ should emit FraudChallengeDefeated event
 ✓ should refund ETH
 when the transaction has multiple inputs
 when the input is marked as correctly spent in the Bridge
 ✓ should emit FraudChallengeDefeated event
 ✓ should refund ETH
 defeatFraudChallengeWithHeartbeat
 ✓ should emit FraudChallengeDefeated event
 ✓ should refund ETH
 submitMovingFundsProof
 when called by an unauthorized third party
 ✓ should revert
 when called by a wallet maintainer that is not SPV maintainer
 ✓ should revert

 when called by an SPV maintainer
 when there is a single target wallet
 ✓ should emit MovingFundsCompleted event
 ✓ should refund ETH
 when there are multiple target wallets and the amount is indivisible
 ✓ should emit MovingFundsCompleted event
 ✓ should refund ETH
 when there are multiple target wallets and the amount is divisible
 ✓ should emit MovingFundsCompleted event
 ✓ should refund ETH
 resetMovingFundsTimeout
 ✓ should emit MovingFundsTimeoutReset event
 ✓ should refund ETH
 notifyMovingFundsBelowDust
 when called by an unauthorized third party
 ✓ should revert
 when called by an SPV mantainer that is not wallet maintainer
 ✓ should revert
 when called by a wallet maintainer
 ✓ should emit MovingFundsBelowDustReported event
 ✓ should refund ETH
 submitMovedFundsSweepProof
 when called by an unauthorized third party
 ✓ should revert
 when called by a wallet maintainer that is not SPV maintainer
 ✓ should revert
 when called by an SPV maintainer
 when the sweeping wallet has no main UTXO set
 when there is a single input referring to a Pending sweep request
 ✓ should emit MovedFundsSwept event
 ✓ should refund ETH
 when the sweeping wallet has a main UTXO set
 when the first input refers to a Pending sweep request and the second input refers to the
sweeping wallet main UTXO
 ✓ should emit MovedFundsSwept event
 ✓ should refund ETH
 notifyWalletClosingPeriodElapsed
 when called by an unauthorized third party
 ✓ should revert
 when called by an SPV maintainer that is not wallet maintainer
 ✓ should revert
 when called by a wallet maintainer
 ✓ should emit WalletClosed event
 ✓ should refund ETH
 authorizeWalletMaintainer
 when the caller is not the owner
 ✓ should revert
 when the caller is the owner
 ✓ should be already populated with the authorized maintainer
 ✓ should authorize a thirdParty
 ✓ should be total of 2 authorized maintainers
 ✓ should add a thirdParty to a maintainers list
 ✓ should emit a WalletMaintainerAuthorized event
 authorizeSpvMaintainer
 when the caller is not the owner
 ✓ should revert
 when the caller is the owner
 ✓ should be already populated with the authorized maintainer
 ✓ should authorize a thirdParty
 ✓ should be total of 2 authorized maintainers
 ✓ should add a thirdParty to a maintainers list
 ✓ should emit an SpvMaintainerAuthorized event
 unauthorizeWalletMaintainer
 when the caller is not the owner
 ✓ should revert
 when the caller is the owner
 ✓ should be a total of 0 authorized maintainers
 when there are no authorized maintainers
 ✓ should revert
 when there are authorized maintainers
 when maintainer to unauthorize is not among the authorized maintainers
 ✓ should revert

 when there is one authorized maintainer
 when unauthorizing the one that is authorized
 ✓ should unauthorize the maintainer
 ✓ should emit a WalletMaintainerUnauthorized event
 when there are many authorized maintainers
 when unauthorizing a couple of maintainers from the beginning
 ✓ should unauthorize the maintainer
 ✓ should change the last maintainer's index with the unauthorized one
 ✓ should unauthorize the other maintainer
 ✓ should change the last maintainer's index with the unauthorized one
 ✓ should remove 2 maintainers from the maintainers array
 ✓ should emit a WalletMaintainerUnauthorized event
 ✓ should emit a WalletMaintainerUnauthorized event
 when unauthorizing a couple of maintainers from the middle
 ✓ should unauthorize a maintainer
 ✓ should change the last maintainer's index with the unauthorized one
 ✓ should unauthorize the other maintainer
 ✓ should change the last maintainer's index with the unauthorized one
 ✓ should remove 2 maintainers from the maintainers array
 ✓ should emit a WalletMaintainerUnauthorized event
 ✓ should emit a WalletMaintainerUnauthorized event
 when unauthorizing a couple of maintainers from the end
 ✓ should unauthorize a maintainer
 ✓ should unauthorize the other maintainer
 ✓ should change the last maintainer's index with the unauthorized one
 ✓ should remove 2 maintainers from the maintainers array
 ✓ should emit a WalletMaintainerUnauthorized event
 ✓ should emit a WalletMaintainerUnauthorized event
 unauthorizeSpvMaintainer
 when the caller is not the owner
 ✓ should revert
 when the caller is the owner
 ✓ should be a total of 0 authorized maintainers
 when there are no authorized maintainers
 ✓ should revert
 when there are authorized maintainers
 when maintainer to unauthorize is not among the authorized maintainers
 ✓ should revert
 when there is one authorized maintainer
 when unauthorizing the one that is authorized
 ✓ should unauthorize the maintainer
 ✓ should emit an SpvMaintainerUnauthorized event
 when there are many authorized maintainers
 when unauthorizing a couple of maintainers from the beginning
 ✓ should unauthorize the maintainer
 ✓ should change the last maintainer's index with the unauthorized one
 ✓ should unauthorize the other maintainer
 ✓ should change the last maintainer's index with the unauthorized one
 ✓ should remove 2 maintainers from the maintainers array
 ✓ should emit an SpvMaintainerUnauthorized event
 ✓ should emit an SpvMaintainerUnauthorized event
 when unauthorizing a couple of maintainers from the middle
 ✓ should unauthorize a maintainer
 ✓ should change the last maintainer's index with the unauthorized one
 ✓ should unauthorize the other maintainer
 ✓ should change the last maintainer's index with the unauthorized one
 ✓ should remove 2 maintainers from the maintainers array
 ✓ should emit an SpvMaintainerUnauthorized event
 ✓ should emit an SpvMaintainerUnauthorized event
 when unauthorizing a couple of maintainers from the end
 ✓ should unauthorize a maintainer
 ✓ should unauthorize the other maintainer
 ✓ should change the last maintainer's index with the unauthorized one
 ✓ should remove 2 maintainers from the maintainers array
 ✓ should emit an SpvMaintainerUnauthorized event
 ✓ should emit an SpvMaintainerUnauthorized event
 updateBridge
 when called by a third party
 ✓ should revert
 when called by the owner
 ✓ should update the bridge
 ✓ should emit the BridgeUpdated event

 updateGasOffsetParameters
 when called by a third party
 ✓ should revert
 when called by the owner
 ✓ should emit the GasOffsetParametersUpdated event
 ✓ should update submitRedemptionProofGasOffset
 ✓ should update resetMovingFundsTimeoutGasOffset
 ✓ should update submitMovingFundsProofGasOffset
 ✓ should update notifyMovingFundsBelowDustGasOffset
 ✓ should update submitMovedFundsSweepProofGasOffset
 ✓ should update requestNewWalletGasOffset
 ✓ should update notifyWalletCloseableGasOffset
 ✓ should update notifyWalletClosingPeriodElapsedGasOffset
 ✓ should update defeatFraudChallengeGasOffset
 ✓ should update defeatFraudChallengeWithHeartbeatGasOffset
 updateReimbursementPool
 when called by a third party
 ✓ should revert
 when called by the owner
 ✓ should emit the ReimbursementPoolUpdated event

 LightRelay
 genesis
 when called with valid inputs
 ✓ should record the relay as ready for use
 ✓ should emit the Genesis event
 ✓ should record the genesis epoch difficulty correctly
 when called with invalid block height
 ✓ should revert
 when called with invalid header data
 ✓ should revert
 when called with excessive proof length
 ✓ should revert
 when called with zero proof length
 ✓ should revert
 when called by anyone other than governance
 ✓ should revert
 when called more than once
 ✓ should revert
 setProofLength
 before genesis
 ✓ should revert
 after genesis
 when called correctly
 ✓ should store the new proof length
 ✓ should emit the ProofLengthChanged event
 when called with excessive proof length
 ✓ should revert
 when called with zero proof length
 ✓ should revert
 when called with unchanged proof length
 ✓ should revert
 when called by anyone other than governance
 ✓ should revert
 authorizations
 authorization status
 ✓ should start at false
 when set by governance
 ✓ should be updated
 ✓ should emit an event
 when set by someone other than governance
 ✓ should revert
 when unset by governance
 ✓ should be updated
 ✓ should emit an event
 submitter authorization
 ✓ should start at false
 when set by governance
 ✓ should be updated
 ✓ should emit an event
 when set by someone other than governance
 ✓ should revert

 when unset by governance
 ✓ should be updated
 ✓ should emit an event
 retarget
 when called before genesis
 ✓ should revert
 after genesis (epoch 274)
 when called correctly
 ✓ should store the new difficulty
 ✓ should emit the Retarget event
 with incorrect number of headers
 ✓ should revert
 with too few headers before retarget
 ✓ should revert
 with too few headers after retarget
 ✓ should revert
 with proof length 9
 ✓ should store the new difficulty
 ✓ should emit the Retarget event
 with appropriate authorisation
 ✓ should store the new difficulty
 ✓ should emit the Retarget event
 without appropriate authorisation
 ✓ should revert
 after genesis (invalid)
 ✓ should reject chains with invalid difficulty
 after genesis (long chain)
 with proof length 6
 ✓ should store the new difficulty
 ✓ should emit the Retarget event
 with proof length 50
 ✓ should store the new difficulty
 ✓ should emit the Retarget event
 validateChain
 when called before genesis
 ✓ should revert
 when called after genesis (epoch 274)
 ✓ should accept valid header chains
 ✓ should accept short header chains
 ✓ should accept long header chains
 ✓ should reject single headers
 ✓ should reject header chains with an unknown retarget
 ✓ should reject header chains in a future epoch
 when called after genesis (epoch 275)
 ✓ should accept valid header chains
 ✓ should reject header chains partially in a past epoch
 ✓ should reject header chains fully in a past epoch
 when called after a retarget
 in the genesis epoch
 ✓ should accept valid header chains
 over the retarget
 ✓ should accept valid header chains (3 before, 1 after)
 ✓ should accept valid header chains (2 before, 2 after)
 ✓ should accept valid header chains (1 before, 3 after)
 in the new epoch
 ✓ should accept valid header chains
 with chain reorgs
 valid chains
 ✓ should be accepted
 invalid chains
 ✓ should be rejected
 gas costs
 with proof length 6
 ✓ should accept valid header chains
 with proof length 18
 ✓ should accept valid header chains
 getBlockDifficulty
 when called before genesis
 ✓ should revert
 when called after genesis
 ✓ should return the difficulty for the first block of the epoch
 ✓ should return the difficulty for the last block of the epoch

 ✓ should revert for blocks before genesis
 ✓ should revert for blocks after the latest epoch
 when called after a retarget
 ✓ should return the difficulty for the first block of the genesis epoch
 ✓ should return the difficulty for the last block of the genesis epoch
 ✓ should return the difficulty for the first block of the next epoch
 ✓ should return the difficulty for the last block of the next epoch
 ✓ should revert for blocks before genesis
 ✓ should revert for blocks after the latest epoch
 getEpochDifficulty
 when called before genesis
 ✓ should revert
 when called after genesis
 ✓ should return the difficulty for the genesis epoch
 ✓ should revert for epochs before genesis
 ✓ should revert for unproven epochs
 when called after a retarget
 ✓ should return the difficulty for the genesis epoch
 ✓ should return the difficulty for the next epoch
 ✓ should revert for epochs before genesis
 ✓ should revert for unproven epochs
 getRelayRange
 when called before genesis
 ✓ should return nonsense
 when called after genesis
 ✓ should return a single epoch
 when called after a retarget
 ✓ should return two epochs
 getCurrentEpochDifficulty
 when called before genesis
 ✓ should return zero
 when called after genesis
 ✓ should return the difficulty for the genesis epoch
 when called after a retarget
 ✓ should return the difficulty for the next epoch
 getPrevEpochDifficulty
 when called before genesis
 ✓ should return zero
 when called after genesis
 ✓ should return zero
 when called after a retarget
 ✓ should return the difficulty for the genesis epoch
 getCurrentAndPrevEpochDifficulty
 when called before genesis
 ✓ should return zero for both
 when called after genesis
 ✓ should return current difficulty, and zero for previous
 when called after a retarget
 ✓ should return current and previous difficulty

 LightRelayMaintainerProxy
 authorize
 when called by non-owner
 ✓ should revert
 when called by the owner
 when the maintainer is already authorized
 ✓ should revert
 when the maintainer is not authorized yet
 ✓ should authorize the address
 ✓ should emit the MaintainerAuthorized event
 deauthorize
 when called by non-owner
 ✓ should revert
 when called by the owner
 when the maintainer is not authorized
 ✓ should revert
 when the maintainer is authorized
 ✓ should deauthorize the address
 ✓ should emit the MaintainerDeauthorized event
 updateLightRelay
 when called by non-owner
 ✓ should revert

 when called by the owner
 when called with zero address
 ✓ should revert
 when called with a non-zero address
 ✓ should update the light relay address
 ✓ should emit the LightRelayUpdated event
 updateReimbursementPool
 when called by non-owner
 ✓ should revert
 when called by the owner
 ✓ should emit the ReimbursementPoolUpdated event
 updateRetargetGasOffset
 when called by non-owner
 ✓ should revert
 when called by the owner
 ✓ should emit the RetargetGasOffsetUpdated event
 ✓ should update retargetGasOffset
 retarget
 when called by an unauthorized address
 ✓ should revert
 when called by an authorized maintainer
 when the proof length is 10 headers
 ✓ should emit Retarget event
 ✓ should refund ETH
 when the proof length is 20 headers
 ✓ should emit Retarget event
 ✓ should refund ETH
 when the proof length is 50 headers
 ✓ should emit Retarget event
 ✓ should refund ETH

 DonationVault
 constructor
 when called with a 0-address bank
 ✓ should revert
 when called with correct parameters
 ✓ should set the Bank field
 donate
 when caller has not enough balance in the bank
 ✓ should revert
 when vault does not have enough allowance for caller's balance
 ✓ should revert
 when called with correct parameters
 ✓ should decrease donor's balance
 ✓ should not increase vault's balance
 ✓ should emit BalanceDecreased event
 ✓ should emit DonationReceived event
 receiveBalanceApproval
 when called not by the bank
 ✓ should revert
 when caller has not enough balance in the bank
 ✓ should revert
 when called with correct parameters
 ✓ should decrease donor's balance
 ✓ should not increase vault's balance
 ✓ should emit BalanceDecreased event
 ✓ should emit DonationReceived event
 receiveBalanceIncrease
 when called not by the bank
 ✓ should revert
 when called with no depositors
 ✓ should revert
 when called with correct parameters
 ✓ should not increase depositors' balances
 ✓ should not increase vault's balance
 ✓ should emit BalanceDecreased event
 ✓ should emit DonationReceived event

 TBTCVault - OptimisticMinting
 requestOptimisticMint
 when called not by a minter
 ✓ should revert

 when called by a minter
 when optimistic minting is paused
 ✓ should revert
 when optimistic minting has been already requested
 ✓ should revert
 when the deposit has not been revealed
 ✓ should revert
 when the deposit has been revealed
 when the deposit has been swept
 ✓ should revert
 when the deposit is targeted to another vault
 ✓ should revert
 when all conditions are met
 ✓ should request optimistic minting
 ✓ should emit an event
 finalizeOptimisticMint
 when called not by a minter
 ✓ should revert
 when called by a minter
 when optimistic minting is paused
 ✓ should revert
 when minting has not been requested
 ✓ should revert
 when the minting delay has not passed yet
 ✓ should revert
 when requested minting has been already finalized
 ✓ should revert
 when the deposit has been already swept
 ✓ should revert
 when all conditions are met
 when fees are non-zero
 ✓ should send optimistic mint fee to treasury
 ✓ should mint TBTC to depositor
 ✓ should incur optimistic mint debt
 ✓ should mark the request as finalized
 ✓ should emit an event
 when the optimistic minting fee is zero
 ✓ should send no optimistic mint fee to treasury
 ✓ should mint TBTC to depositor
 ✓ should incur optimistic mint debt
 ✓ should mark the request as finalized
 ✓ should emit an event
 when the bridge deposit treasury fee is zero
 ✓ should send optimistic mint fee to treasury
 ✓ should mint TBTC to depositor
 ✓ should incur optimistic mint debt
 ✓ should mark the request as finalized
 ✓ should emit an event
 when both fees are zero
 ✓ should mint TBTC to depositor
 ✓ should incur optimistic mint debt
 ✓ should mark the request as finalized
 ✓ should emit an event
 cancelOptimisticMint
 when called not by a guardian
 ✓ should revert
 when called by a guardian
 when minting has not been requested
 ✓ should revert
 when requested minting has been finalized
 ✓ should revert
 when requested minting has not been finalized
 ✓ should cancel optimistic minting
 ✓ should emit an event
 addMinter
 when called not by the governance
 ✓ should revert
 when called by the governance
 when address is not a minter
 ✓ should add address as a minter
 ✓ should emit an event
 when address is a minter

 ✓ should revert
 when there are multiple minters
 ✓ should add them into the list
 removeMinter
 when called not by the governance or a guardian
 ✓ should revert
 when called by the governance
 when address is a minter
 ✓ should take minter role from the address
 ✓ should emit an event
 when address is not a minter
 ✓ should revert
 when called by a guardian
 when address is not a minter
 ✓ should revert
 when address is a minter
 ✓ should take minter role from the address
 ✓ should emit an event
 when there are multiple minters
 when deleting the first minter
 ✓ should update the minters list
 when deleting the last minter
 ✓ should update the minters list
 when deleting minter from the middle of the list
 ✓ should update the minters list
 addGuardian
 when called not by the governance
 ✓ should revert
 when called by the governance
 when address is not a guardian
 ✓ should add address as a guardian
 ✓ should emit an event
 when address is a guardian
 ✓ should revert
 removeGuardian
 when called not by the governance
 ✓ should revert
 when called by the governance
 when address is a guardian
 ✓ should take guardian role from the address
 ✓ should emit an event
 when address is not a guardian
 ✓ should revert
 pauseOptimisticMinting
 when called not by the governance
 ✓ should revert
 when called by the governance
 when optimistic minting is already paused
 ✓ should revert
 when optimistic minting is not paused
 ✓ should pause optimistic minting
 ✓ should emit an event
 unpauseOptimisticMinting
 when called not by the governance
 ✓ should revert
 when called by the governance
 when optimistic minting is not paused
 ✓ should revert
 when optimistic minting is paused
 ✓ should unpause optimistic minting
 ✓ should emit an event
 beginOptimisticMintingFeeUpdate
 when called not by the governance
 ✓ should revert
 when called by the governance
 ✓ should not update the optimistic minting fee
 ✓ should start the governance delay timer
 ✓ should emit an event
 finalizeOptimisticMintingFeeUpdate
 when called not by the governance
 ✓ should revert
 when the update process is not initiated

 ✓ should revert
 when the governance delay has not passed
 ✓ should revert
 when the update process is initiated and governance delay passed
 ✓ should update the optimistic minting fee
 ✓ should emit an event
 ✓ should reset the governance delay timer
 beginOptimisticMintingDelayUpdate
 when called not by the governance
 ✓ should revert
 when called by the governance
 ✓ should not update the optimistic minting delay
 ✓ should start the governance delay timer
 ✓ should emit an event
 finalizeOptimisticMintingDelayUpdate
 when called not by the governance
 ✓ should revert
 when the update process is not initiated
 ✓ should revert
 when the governance delay has not passed
 ✓ should revert
 when the update process is initiated and governance delay passed
 ✓ should update the optimistic minting delay
 ✓ should emit an event
 ✓ should reset the governance delay timer
 calculateDepositKey
 ✓ should calculate the key as expected
 ✓ should calculate the same key as the Bridge
 receiveBalanceIncrease
 when the deposit for which optimistic minting was requested gets swept after finalization
 ✓ should repay optimistic minting debt
 ✓ should emit an event
 when multiple deposits gets swept after finalization
 when both deposits were optimistically minted
 ✓ should repay optimistic minting debt
 ✓ should mint the right amount of TBTC to depositor
 ✓ should emit an event
 when only one deposit was optimistically minted
 ✓ should repay optimistic minting debt
 ✓ should mint the right amount of TBTC
 ✓ should emit an event

 TBTCVault - Redemption
 unmintAndRedeem
 when the redeemer has no TBTC
 ✓ should revert
 when the redeemer has not enough TBTC
 ✓ should revert
 when there is a single redeemer
 ✓ should transfer balances to Bridge
 ✓ should request redemptions in Bridge
 ✓ should burn TBTC
 ✓ should emit Unminted events
 when amount is not fully convertible to satoshis
 ✓ should transfer balances to Bridge
 ✓ should request redemptions in Bridge
 ✓ should burn TBTC
 ✓ should emit Unminted events
 when there are multiple redeemers
BigNumber { value: "100000000000000000000" }
BigNumber { value: "100000000000000000000" }
 ✓ should transfer balances to Bridge
 ✓ should request redemptions in Bridge
 ✓ should burn TBTC
 ✓ should emit Unminted events
 receiveApproval
 when called via approveAndCall
 when called with non-empty extraData
 when there is a single redeemer
 ✓ should transfer balances to Bridge
 ✓ should request redemptions in Bridge
 ✓ should burn TBTC

 ✓ should emit Unminted events
 when there are multiple redeemers
 ✓ should transfer balances to Bridge
 ✓ should request redemptions in Bridge
 ✓ should burn TBTC
 ✓ should emit Unminted events

 TBTCVault
 constructor
 when called with a 0-address bank
 ✓ should revert
 when called with a 0-address TBTC token
 ✓ should revert
 when called with a 0-address bridge
 ✓ should revert
 when called with correct parameters
 ✓ should set the Bank field
 ✓ should set the TBTC token field
 recoverERC20FromToken
 when called not by the governance
 ✓ should revert
 when called with correct parameters
 ✓ should do a successful recovery
 recoverERC721FromToken
 when called not by the governance
 ✓ should revert
 when called with correct parameters
 ✓ should do a successful recovery
 recoverERC20
 when called not by the governance
 ✓ should revert
 when called with correct parameters
 ✓ should do a successful recovery
 recoverERC721
 when called not by the governance
 ✓ should revert
 when called with correct parameters
 ✓ should do a successful recovery
 mint
 when minter has not enough balance in the bank
 ✓ should revert
 when there is a single minter
 ✓ should transfer balance to the vault
 ✓ should mint TBTC
 ✓ should emit Minted event
 when amount is not fully convertible to satoshis
 ✓ should transfer balance to the vault
 ✓ should mint TBTC
 ✓ should emit Minted event
 when there are multiple minters
 ✓ should transfer balances to the vault
 ✓ should mint TBTC
 ✓ should emit Minted event
 unmint
 when the unminter has no TBTC
 ✓ should revert
 when the unminter has not enough TBTC
 ✓ should revert
 when there is a single unminter
 ✓ should transfer balance to the unminter
 ✓ should burn TBTC
 ✓ should emit Unminted events
 when amount is not fully convertible to satoshis
 ✓ should transfer balance to the unminter
 ✓ should burn TBTC
 ✓ should emit Unminted events
 when there are multiple unminters
 ✓ should transfer balances to unminters
 ✓ should burn TBTC
 ✓ should emit Unminted events
 receiveApproval
 when called not for TBTC token

 ✓ should revert
 when called directly
 ✓ should revert
 when called via approveAndCall
 when called with an empty extraData
 ✓ should transfer balance to the unminter
 ✓ should burn TBTC
 ✓ should emit Unminted event
 when amount is not fully convertible to satoshis
 ✓ should transfer balance to the unminter
 ✓ should burn TBTC
 ✓ should emit Unminted events
 receiveBalanceApproval
 when called not by the bank
 ✓ should revert
 when caller has not enough balance in the bank
 ✓ should revert
 when there is a single caller
 ✓ should transfer balance to the vault
 ✓ should mint TBTC
 ✓ should emit Minted event
 when there are multiple callers
 ✓ should transfer balances to the vault
 ✓ should mint TBTC
 ✓ should emit Minted event
 receiveBalanceIncrease
 when called not by the bank
 ✓ should revert
 when called with no depositors
 ✓ should revert
 with single depositor
 ✓ should mint TBTC
 ✓ should emit Minted event
 with multiple depositors
 ✓ should mint TBTC
 ✓ should emit Minted events
 initiateUpgrade
 when called not by the governance
 ✓ should revert
 when called by the governance
 when called with a zero-address new vault
 ✓ should revert
 when called with a non-zero-address new vault
 ✓ should not transfer TBTC token ownership
 ✓ should set the upgrade initiation time
 ✓ should set the new vault address
 ✓ should emit UpgradeInitiated event
 finalizeUpgrade
 when called not by the governance
 ✓ should revert
 when called by the governance
 when the upgrade process has not been initiated
 ✓ should revert
 when the upgrade process has been initiated
 when the governance delay has not passed
 ✓ should revert
 when the governance delay passed
 ✓ should transfer TBTC token ownership
 ✓ should transfer the entire bank balance
 ✓ should emit UpgradeFinalized event
 ✓ should reset the upgrade initiation time
 ✓ should reset the new vault address
 amountToSatoshis
 when the amount is convertible with a remainder
 ✓ should calculate correct convertible amount
 ✓ should calculate correct remainder
 ✓ should calculate correct satoshi amount
 when the amount is convertible without a remainder
 ✓ should calculate correct convertible amount
 ✓ should calculate correct remainder
 ✓ should calculate correct satoshi amount

 2190 passing (3m)
 27 pending

Integration tests for 'keep-network/tbtc-v2'

 Integration Test - Full flow
transferred 4500000000 T to the VendingMachine for KEEP
transferred 4500000000 T to the VendingMachine for NU
Warning: Potentially unsafe deployment of WalletRegistry

 You are using the `unsafeAllow.external-library-linking` flag to include external libraries.
 Make sure you have manually checked that the linked libraries are upgrade safe.

Warning: Potentially unsafe deployment of BridgeStub

 You are using the `unsafeAllow.external-library-linking` flag to include external libraries.
 Make sure you have manually checked that the linked libraries are upgrade safe.

Initialized Wallet Owner address: 0x3c705dB336C81c7FEFC5746e283aB2c0781A4B7b in transaction:
0x4c54557085513b45258fe2a2f2b11d7b8abe6f870942f0d513209c4d26df7624
 Check deposit and redemption flow
 when wallet is created
 when a deposit is revealed
 ✓ should create a deposit
 when the deposit sweep proof is submitted
 ✓ should mint TBTC tokens for the depositor
 ✓ should increase the balance of vault in the bank
 ✓ should update the main UTXO of the wallet
 when a redemption is requested
 ✓ should create a pending redemption request
 ✓ should increase the pending redemptions value of the wallet
 ✓ should increase the balance of bridge in the bank
 when the redemption proof is submitted
 ✓ should zero the pending redemptions value of the wallet
 ✓ should zero the balance of bridge in the bank
 ✓ should update the main UTXO of the wallet

 Integration Test - Slashing
 notifyFraudChallengeDefeatTimeout
 when wallet is created
 when a fraud is reported
 ✓ should slash wallet members
 ✓ should close the wallet in the wallet registry
 ✓ should terminate the wallet in the bridge
 ✓ should consume around 3 100 000 gas for Bridge.notifyMovingFundsTimeoutTx transaction
 notifyRedemptionTimeout
 when wallet is created
 when a redemption timeout is reported
 ✓ should slash wallet members
 ✓ should not close the wallet in the wallet registry
 ✓ should transition the wallet in the bridge to the MovingFunds state
 ✓ should consume around 3 150 000 gas for Bridge.notifyRedemptionTimeout transaction
 notifyMovingFundsTimeout
 when wallet is created
 when moving funds timeout is reported
 ✓ should slash wallet members
 ✓ should close the wallet in the wallet registry
 ✓ should terminate the wallet in the bridge
 ✓ should consume around 3 100 000 gas for Bridge.notifyMovingFundsTimeoutTx transaction

 Integration Test - Wallet Creation
 new wallet creation (happy path)
 ✓ should register a new wallet in the WalletRegistry
 ✓ should register a new wallet details in the Bridge
 ✓ should register a new wallet as active in the Bridge
 ✓ should consume around 94 000 gas for Bridge.requestNewWallet transaction
 ✓ should consume around 341 000 gas for WalletRegistry.approveDkgResult transaction

 27 passing (1m)

Tests for 'thesis/mezo-portal'

 BitcoinDepositor
 initialize
 when called directly on the implementation
 ✔ should revert
 when called on the proxy
 when called again
 ✔ should revert (78ms)
 when called with zero-address bridge
 ✔ should revert
 when called with zero-address tBTC vault
 ✔ should revert
 when called with zero-address tBTC token
 ✔ should revert
 when called with zero-address portal
 ✔ should revert
 initializeDeposit
 when the deposit owner is zero address
 ✔ should revert
 when the deposit was already initialized
 ✔ should revert
 when initializing for the first time
 ✔ should set the deposit state to Initialized
 ✔ should emit DepositInitialized event
 finalizeDeposit
 when the deposit was not initialized before
 ✔ should revert
 when the deposit was not finalized by the bridge
 ✔ should revert
 when deposit was finalized by the bridge
 when a single, non-lockable deposit was finalized
 when deposit owner param is different than during the initialization
 ✔ should revert
 when deposit lock period param is different than during the initialization
 ✔ should revert
 when called with the same params as during the initialization
 ✔ should emit DepositFinalized event
 ✔ should set the deposit state to Finalized
 ✔ should deposit tokens to the Portal contract (59ms)
 ✔ should keep the surplus in the BitcoinDepositor contract
 when a single, lockable deposit was finalized
 when deposit owner param is different than during the initialization
 ✔ should revert
 when deposit lock period param is different than during the initialization
 ✔ should revert
 when called with the same params as during the initialization
 ✔ should emit DepositFinalized event
 ✔ should set the deposit state to Finalized
 ✔ should deposit tokens to the Portal contract
 ✔ should keep the surplus in the BitcoinDepositor contract
 when multiple deposits were finalized
 when called with the same params as during the initialization
 ✔ should set the states of deposits to Finalized
 ✔ should deposit tokens to the Portal contract
 ✔ should keep the surplus in the BitcoinDepositor contract
 when called for the same deposit second time
 when called with the same params
 ✔ should revert
 when called with different params
 ✔ should revert

 Portal - deposit method
 deposit
 when called incorrectly
 when depositing without locking
 when depositing 0-address token
 ✔ should revert
 when depositing unsupported token
 ✔ should revert
 when depositing 0 amount
 ✔ should revert
 when depositing with locking
 when token is not supported

 ✔ should revert
 when token is not lockable
 ✔ should revert
 when lock time is less than 1 week
 ✔ should revert
 when lock time is less than min lock time
 ✔ should revert
 when lock time is greater than max lock time
 ✔ should revert
 when lock time is not a multiple of a week
 ✔ should round the lock period to the nearest week
 when called correctly
 when depositing without locking
 when depositing already supported token
 ✔ should emit a Deposited event
 ✔ should update the balance of the depositor
 ✔ should set unlock time to current block
 ✔ should transfer the token to the contract
 when depositing newly added supported token
 ✔ should emit a Deposited event
 ✔ should update the balance of the depositor
 ✔ should set unlock time to current block
 ✔ should transfer the token to the contract
 when depositing with locking
 ✔ should emit a Deposited event
 ✔ should emit a Locked event
 ✔ should set unlock time correctly

 Portal - depositFor method
 depositFor
 when called incorrectly
 when depositing without locking
 when depositing 0-address token
 ✔ should revert
 when depositing unsupported token
 ✔ should revert
 when depositing with 0-address deposit owner
 ✔ should revert
 when depositing 0 amount
 ✔ should revert
 when depositing with locking
 when token is not supported
 ✔ should revert
 when token is not lockable
 ✔ should revert
 when lock time is less than 1 week
 ✔ should revert
 when lock time is less than min lock time
 ✔ should revert
 when lock time is greater than max lock time
 ✔ should revert
 when lock time is not a multiple of a week
 ✔ should round the lock period to the nearest week
 when called correctly
 when depositing without locking
 when depositing for someone else
 ✔ should emit a Deposited event
 ✔ should update the balance of the depositor
 ✔ should set unlock time to current block
 ✔ should transfer the token to the contract
 when depositing for oneself
 ✔ should emit a Deposited event
 ✔ should update the balance of the depositor
 ✔ should set unlock time to current block
 ✔ should transfer the token to the contract
 when depositing with locking
 when depositing with locking for someone else
 ✔ should emit a Deposited event
 ✔ should emit a Locked event
 ✔ should set unlock time correctly
 when depositing with locking for oneself
 ✔ should emit a Deposited event

 ✔ should emit a Locked event
 ✔ should set unlock time correctly

 Portal - lock method
 lock
 when called incorrectly
 when the deposit doesn't exist
 ✔ should revert
 when token can't be locked
 ✔ should revert
 when lock period is less than 1 week
 ✔ should revert
 when lock period is less than min lock period
 ✔ should revert
 when lock period is more than max lock period
 ✔ should revert
 when lock period is less than current lock period
 ✔ should revert
 when called correctly
 when locking deposit for the first time
 ✔ should emit a Locked event
 ✔ should set unlock time correctly
 when extending lock period
 ✔ should emit a Locked event
 ✔ should set unlock time correctly
 when locking deposit after lock period has expired
 ✔ should emit a Locked event
 ✔ should set unlock time correctly

 Portal - receiveApproval method
 receiveApproval
 when called incorrectly
 when depositing without locking
 when receiving unsupported token
 ✔ should revert
 when called directly
 ✔ should revert
 when receiving empty lock period data
 ✔ should revert
 when depositing amount exceeding uint96
 ✔ should revert
 when depositing with locking
 when it's trying to lock not lockable token
 ✔ should revert
 when it's trying to lock without lock period
 ✔ should revert
 when it's trying to lock with lock period less than min lock period
 ✔ should revert
 when it's trying to lock with lock period exceeding max lock period
 ✔ should revert
 when it's trying to lock with lock period of 1 day
 ✔ should revert
 when called correctly
 when depositing without locking
 ✔ should emit a Deposited event
 ✔ should update the balance of the depositor
 ✔ should transfer the token to the contract
 when depositing with locking
 ✔ should emit a Deposited event
 ✔ should emit a Locked event
 ✔ should set unlock time correctly

 Portal - deployment and governance
 deployment
 when deployed with 0-address token
 ✔ should revert
 when deployed with supported tokens
 ✔ should deploy with 1 supported token
 ✔ should deploy with >1 supported tokens
 addSupportedToken
 when called by non-owner
 ✔ should revert

 when called by owner incorrectly
 when adding 0-address token
 ✔ should revert
 when adding already supported token
 ✔ should revert
 when called by owner correctly
 ✔ should emit a SupportedTokenAdded event
 ✔ should update the supported tokens
 setMinLockPeriod
 when called by non-owner
 ✔ should revert
 when called by owner
 when called incorrectly
 when trying to set min lock period greater than max lock period
 ✔ should revert
 when trying to set min lock period not normalized
 ✔ should revert
 when trying to set min lock period to value giving 0 post-normalization
 ✔ should revert
 when trying to set min lock period to 0
 ✔ should revert
 when called correctly
 ✔ should emit a MinLockPeriodUpdated event
 ✔ should update the min lock period
 setMaxLockPeriod
 when called by non-owner
 ✔ should revert
 when called by owner
 when called incorrectly
 when trying to set max lock period less than min lock period
 ✔ should revert
 when trying to set max lock period not normalized
 ✔ should revert
 when called correctly
 ✔ should emit a MaxLockPeriodUpdated event
 ✔ should update the max lock period

 Portal - contract upgrades
 whan upgrading to an invalid contract
 when a variable was added before old variables
 ✔ should throw an error
 when a variable was removed
 ✔ should throw an error
 when upgrading to a valid contract
 ✔ new instance should have the same address as the old one
 contract variables
 ✔ should initialize new variable
 ✔ should add new supported tokens
 ✔ should keep old supported tokens
 ✔ should keep old supported tokens' balances
 contract functions
 ✔ should execute the new code
 ✔ should have access to storage slots from the previous version
 ✔ should be able to update storage slots

 Portal - withdraw method
 withdraw
 when withdrawing incorrectly
 when token is not supported
 ✔ should revert
 when amount deposited is 0
 ✔ should revert
 when amount to withdraw is 0
 ✔ should revert
 when amount is greater than deposited balance
 ✔ should revert
 when deposit is not locked
 when the token being withdrawn is not lockable
 ✔ should emit Withdrawn event
 ✔ should decrease the deposited balance
 ✔ should transfer the token to the user
 ✔ should allow to withdraw the remaining balance later

 when the token being withdrawn is lockable
 ✔ should emit Withdrawn event
 ✔ should decrease the deposited balance
 ✔ should transfer the token to the user
 ✔ should allow to withdraw the remaining balance later
 when deposit is locked
 when the token being withdrawn is lockable
 when lock time has not passed
 when trying to withdraw lockable token
 ✔ should revert
 when lock time has passed
 ✔ should emit Withdrawn event
 ✔ should decrease the deposited balance
 ✔ should transfer the token to the user
 ✔ should allow to withdraw the remaining balance later
 when withdrawing funds deposited by someone else
 when called by the deposit funder
 ✔ should revert
 when called by the deposit owner
 ✔ should emit Withdrawn event
 ✔ should transfer the token to the deposit owner

 Integration tests - Depositing
 when no token was deposited yet
 ✔ should have depositCount equal to 0
 ✔ should have no tokens deposited
 when depositing tokens
 ✔ should update depositCount
 ✔ should update token balances
 ✔ should update saved deposits details
 when locking existing deposits
 ✔ should not change depositCount
 ✔ should not change token balances
 ✔ should update saved deposits details
 when depositing tokens with a lock
 ✔ should update depositCount
 ✔ should update token balances
 ✔ should update saved deposits details
 when extending the lock of existing deposits
 ✔ should not change depositCount
 ✔ should not change token balances
 ✔ should update saved deposits details
 when withdrawing deposits
 ✔ should not change depositCount
 ✔ should update token balances
 ✔ should update saved deposits details
 when depositing tokens again
 ✔ should update depositCount
 ✔ should update token balances
 ✔ should update saved deposits details

 Integration tests - Lock Period
 when updating allowed lock period range
 when minimum lock period is increased
 ✔ should allow to use new minimum lock period for new deposits
 ✔ should allow to extend the lock of the existing deposits
 when minimum lock period is decreased
 ✔ should allow to use new minimum lock period for new deposits
 ✔ should not allow to decrease the lock period of the existing deposits
 when maximum lock period is increased
 ✔ should allow to use new maximum lock period for new deposits
 ✔ should allow to extend the lock of the existing deposits
 when maximum lock period is decreased
 ✔ should allow to use new maximum lock period for new deposits
 ✔ should not allow to decrease the lock period of the existing deposits

 Integration tests - Supported Tokens
 when updating supported tokens
 when new token can only be deposited
 ✔ should make a deposit of the new token
 ✔ should not lock the deposit of the new token
 ✔ should withdraw the deposit of the new token

 when new token can be deposited and locked
 ✔ should make a deposit of the new token
 ✔ should allow to lock the deposit of the new token later
 ✔ should make a deposit of the new token with a lock
 ✔ should extend the lock the deposit of the new token
 ✔ should withdraw the deposits of the new token after lock period

 186 passing (4s)

Tests for 'thesis/orangekit'

 BitcoinSafeOwner
 using test harness
 constructor
 ✔ should set initialized property
 setup
 when contract is initialized
 ✔ should revert with ContractAlreadyInitialized
 when contract is not initialized
 when truncatedBitcoinAddress is zero
 ✔ should revert with InvalidTruncatedBitcoinAddress
 when emergencyGovernance address is zero
 ✔ should revert with EmergencyGovernanceAddressZero
 when parameters are valid
 ✔ should set truncatedBitcoinAddress
 ✔ should set emergencyGovernance address
 isValidSignature(bytes,bytes)
 when truncatedBitcoinAddress is not set
 ✔ should revert with InvalidTruncatedBitcoinAddress
 isValidSignature(bytes32,bytes)
 when truncatedBitcoinAddress is not set
 ✔ should revert with InvalidTruncatedBitcoinAddress
 encodeDigest
 ✔ should encode the digest properly (98ms)
 shouldEncodeDigest
 when the highest v bit is not set
 ✔ should not decode (66ms)
 when the highest v bit is set
 ✔ should decode (65ms)
 when contract is deployed by the OrangeKitSafeFactory
 setup
 ✔ should set truncatedBitcoinAddress
 ✔ should set emergencyGovernance address
 when called again
 ✔ should revert with ContractAlreadyInitialized
 isValidSignature(bytes,bytes)
 when signature is valid
 ✔ should return 0x20c13b0b
 when signature is valid (encoded digest mode)
 ✔ should return 0x20c13b0b for vector 1 (89ms)
 ✔ should return 0x20c13b0b for vector 2 (101ms)
 ✔ should return 0x20c13b0b for vector 3 (89ms)
 ✔ should return 0x20c13b0b for vector 4 (95ms)
 ✔ should return 0x20c13b0b for vector 5 (135ms)
 when signature is invalid
 ✔ should return 0xffffffff
 when signature is too short
 ✔ should revert with InvalidSignatureLength
 when signature is too long
 ✔ should revert with InvalidSignatureLength
 when public key is not on the curve
 ✔ should revert with PubkeyNotOnCurve (39ms)
 when s is in the upper range
 ✔ should revert with InvalidSignatureS (40ms)
 isValidSignature(bytes32,bytes)
 when signature is valid
 ✔ should return 0x1626ba7e
 when signature is valid (encoded digest mode)
 ✔ should return 0x1626ba7e for vector 1 (95ms)
 ✔ should return 0x1626ba7e for vector 2 (83ms)
 ✔ should return 0x1626ba7e for vector 3 (92ms)

 ✔ should return 0x1626ba7e for vector 4 (102ms)
 ✔ should return 0x1626ba7e for vector 5 (87ms)
 when signature is invalid
 ✔ should return 0xffffffff
 when signature is too short
 ✔ should revert with InvalidSignatureLength
 when signature is too long
 ✔ should revert with InvalidSignatureLength
 compatibility tests with OrangeKitSafeFactory
 uncompressed P2PKH
 when the v offset is valid
 ✔ should return 0x20c13b0b with offset 0
 when the v offset is incompatible
 ✔ should return 0xffffffff on offset 4
 ✔ should return 0xffffffff on offset 8
 ✔ should return 0xffffffff on offset 12
 when the v offset is unsupported
 ✔ should throw InvalidSignatureV on offset 2
 ✔ should throw InvalidSignatureV on offset 6
 ✔ should throw InvalidSignatureV on offset 10
 ✔ should throw InvalidSignatureV on offset 14
 compressed P2PKH
 when the v offset is valid
 ✔ should return 0x20c13b0b with offset 4
 when the v offset is incompatible
 ✔ should return 0xffffffff on offset 0
 ✔ should return 0xffffffff on offset 8 (49ms)
 when the v offset is unsupported
 ✔ should throw InvalidSignatureV on offset 2 (170ms)
 ✔ should throw InvalidSignatureV on offset 6 (43ms)
 ✔ should throw InvalidSignatureV on offset 10
 ✔ should throw InvalidSignatureV on offset 14
 P2SH_P2WPKH
 when the v offset is valid
 ✔ should return 0x20c13b0b with offset 8
 when the v offset is incompatible
 ✔ should return 0xffffffff on offset 0
 ✔ should return 0xffffffff on offset 4
 ✔ should return 0xffffffff on offset 12
 when the v offset is unsupported
 ✔ should throw InvalidSignatureV on offset 2
 ✔ should throw InvalidSignatureV on offset 6
 ✔ should throw InvalidSignatureV on offset 10
 ✔ should throw InvalidSignatureV on offset 14
 P2WPKH
 when the v offset is valid
 ✔ should return 0x20c13b0b with offset 12
 when the v offset is incompatible
 ✔ should return 0xffffffff on offset 0
 ✔ should return 0xffffffff on offset 8
 when the v offset is unsupported
 ✔ should throw InvalidSignatureV on offset 2
 ✔ should throw InvalidSignatureV on offset 6
 ✔ should throw InvalidSignatureV on offset 10
 ✔ should throw InvalidSignatureV on offset 14
 BitcoinSafeOwner - Upgrade
 DOMAIN_SEPARATOR
 ✔ should be keccak256 of EIP712 domain struct
 UPGRADE_SINGLETON_TYPEHASH
 ✔ should be keccak256 of the UpgradeSingleton message
 upgradeSingleton
 when upgrading to zero address
 ✔ should revert
 when upgrading to the same address
 ✔ should revert
 when the upgrade signature is incorrect
 ✔ should revert
 when the upgrade signature is correct
 when init data are empty
 ✔ should revert (49ms)
 when init data are not empty
 ✔ should upgrade the singleton address

 ✔ should emit SingletonUpgraded event
 ✔ should call the setup function
 ✔ should remain functional
 when init data are not empty and initialization failed
 ✔ should revert (64ms)
 when trying to use the same upgrade signature again
 ✔ should revert
 emergencyUpgradeSingleton
 when called by a third party
 ✔ should revert
 when called by the emergency upgrader
 when upgrading to zero address
 ✔ should revert
 when upgrading to the same address
 ✔ should revert
 when called after the emergency upgrades were disabled
 ✔ should revert
 when called while emergency upgrades are enabled
 when init data are empty
 ✔ should revert
 when init data are not empty
 ✔ should upgrade the singleton address
 ✔ should emit SingletonUpgraded event
 ✔ should call the setup function
 ✔ should remain functional
 EmergencyGovernance
 emergencyUpgrader
 when emergency upgrades are enabled
 ✔ should return the upgrader address
 when emergency upgrades are disabled
 ✔ should revert
 disable
 when called by a third party
 ✔ should revert
 when called by the contract owner
 ✔ should disable emergency upgrades
 ✔ should emit an event
 when called by the contract owner one more time
 ✔ should revert
 setEmergencyUpgrader
 when called by a third party
 ✔ should revert
 when called by the contract owner
 when emergency upgrades are disabled
 ✔ should revert
 when emergency upgrades are enabled
 ✔ should replace the emergency upgrader
 ✔ should emit EmergencyUpgraderChanged event
 OrangeKitDeployer
 deployEmergencyGovernance
 ✔ should set the address and emit event
 ✔ should deploy the EmergencyGovernance contract
 deployBitcoinSafeOwnerSingleton
 ✔ should set the address and emit event
 ✔ should deploy the BitcoinSafeOwner singleton contract
 deployOrangeKitSafeFactorySingleton
 ✔ should set the address and emit event
 ✔ should deploy the OrangeKitSafeFactory singleton contract
 deployOrangeKitSafeFactoryProxy
 when EmergencyGovernance is not deployed
 ✔ should revert
 when BitcoinSafeOwner singleton is not deployed
 ✔ should revert
 when OrangeKitSafeFactory singleton is not deployed
 ✔ should revert
 when all other contracts are deployed
 ✔ should set the address and emit event
 ✔ should deploy the OrangeKitSafeFactory proxy contract
 ✔ should initialize the deployed OrangeKitSafeFactory proxy contract
 ✔ should transfer the ownership of the OrangeKitSafeFactory proxy contract
 deploy
 ✔ should set all addresses and emit events

 ✔ should deploy all contracts (43ms)
 ✔ should initialize the deployed OrangeKitSafeFactory proxy contract
 ✔ should transfer the ownership of the OrangeKitSafeFactory proxy contract
 OrangeKitSafeFactory
 initialize
 when called on initialized contract
 ✔ should revert
 when called on uninitialized contract
 when safe singleton is zero address
 ✔ should revert
 when safe owner singleton is zero address
 ✔ should revert
 when emergency governance is zero address
 ✔ should revert
 when safe singleton is EOA
 ✔ should revert
 when safe owner singleton is EOA
 ✔ should revert
 when emergency governance is EOA
 ✔ should revert
 when called with correct parameters
 ✔ should deploy contract and set parameters correctly
 deploySafe
 when called with a zero address bitcoin owner
 ✔ should revert
 when called for the same owner more than once
 ✔ should revert
 when called once
 ✔ should set BitcoinSafeOwner as the only BitcoinSafe owner
 ✔ should set bitcoin signer ethereum address in the BitcoinSafeOwner contract
 ✔ should set emergency governance in the BitcoinSafeOwner contract
 ✔ should emit the SafeDeployed event
 when called for the same owner at different order
 ✔ should yield the same addresses (1486ms)
 predictAddresses
 for one bitcoin signer
 ✔ should predict correct addresses (42ms)
 for multiple bitcoin signers
 ✔ should predict correct addresses for bitcoin signer 1
 ✔ should predict correct addresses for bitcoin signer 2
 ✔ should predict different addresses for two signers
 transferOwnership
 when called by a third party
 ✔ should revert
 when called by the owner
 when called with zero address new owner
 ✔ should revert
 when called with non-zero new owner address
 ✔ should transfer the ownership
 ✔ should emit OwnershipTransferred event
 upgradeSingleton
 when called by a third party
 ✔ should revert
 when called by the owner
 when upgrading to zero address
 ✔ should revert
 when upgrading to the same address
 ✔ should revert
 when init data are empty
 ✔ should revert
 when init data are not empty
 ✔ should upgrade the singleton address
 ✔ should emit SingletonUpgraded event
 ✔ should call the initialize function
 ✔ should remain functional
 OrangeKitSafeFactory - contract upgrades
 when upgrading to a valid contract
 when singletons remain the same
 contract variables
 ✔ should initialize new variable
 ✔ should keep old singletons addresses
 predictAddresses

 ✔ should predict correct addresses for bitcoin signer 1
 ✔ should predict correct addresses for bitcoin signer 2
 deploySafe
 for safe that has not been deployed in V1
 ✔ should deploy with addresses predicted in V1
 for safe that was already deployed in V1
 ✔ should revert
 Safe with Bitcoin Owner
 deploy safe and test transaction signing
 uncompressed P2PKH address
 safe deployment
 ✔ should set BitcoinSafeOwner as the only BitcoinSafe owner
 ✔ should set truncatedBitcoinAddress in the BitcoinSafeOwner contract
 token transfer execution in the safe
 ✔ should emit ExecutionSuccess event
 ✔ should transfer tokens from safe to destination
 compressed P2PKH address
 safe deployment
 ✔ should set BitcoinSafeOwner as the only BitcoinSafe owner
 ✔ should set truncatedBitcoinAddress in the BitcoinSafeOwner contract
 token transfer execution in the safe
 ✔ should emit ExecutionSuccess event
 ✔ should transfer tokens from safe to destination
 P2SH.P2WPKH address
 safe deployment
 ✔ should set BitcoinSafeOwner as the only BitcoinSafe owner
 ✔ should set truncatedBitcoinAddress in the BitcoinSafeOwner contract
 token transfer execution in the safe
 ✔ should emit ExecutionSuccess event
 ✔ should transfer tokens from safe to destination
 P2WPKH address
 safe deployment
 ✔ should set BitcoinSafeOwner as the only BitcoinSafe owner
 ✔ should set truncatedBitcoinAddress in the BitcoinSafeOwner contract
 token transfer execution in the safe
 ✔ should emit ExecutionSuccess event
 ✔ should transfer tokens from safe to destination
 bitcoinSafeOwner helpers
 recoverTruncatedBitcoinAddressFromBase58
 ✔ should recover the correct data from a uncompressed P2PKH address
 ✔ should recover the correct data from a compressed P2PKH address
 ✔ should recover the correct data from a P2SH.P2WPKH address
 recoverTruncatedBitcoinAddressFromBech32
 ✔ should recover the correct data from a P2WPKH address
 169 passing (13s)

Code Coverage
Update: The coverage situation remains largely the same.

Coverage appears to be decent for code in scope in keep-network/tbtc-v2 and thesis/mezo-portal . However, it looks like there are
two revert statements that are not being tested at the following locations:

1. Portal.sol#L162
2. BitcoinDepositor.sol#L198

Coverage for keep-network/tbtc-v2

File % Stmts % Branch % Funcs % Lines Uncovered
Lines

contracts/ 0 0 0 0

GovernanceUtils.sol 0 0 0 0 … 36,37,38,40

contracts/bank/ 97.87 93.75 100 98.33

Bank.sol 97.87 93.75 100 98.33 380

File % Stmts % Branch % Funcs % Lines Uncovered
Lines

IReceiveBalanceApproval.s
ol

100 100 100 100

contracts/bridge/ 2.83 1.75 1.21 2.24

BitcoinTx.sol 54.05 27.78 40 55 … 352,371,373

Bridge.sol 0 0 0 0 … 1,1966,1991

BridgeGovernance.sol 0 0 0 0 … 2,1767,1783

BridgeGovernanceParamet
ers.sol

0 0 0 0 … 9,1571,1572

BridgeState.sol 0 0 0 0
…
852,857,858

Deposit.sol 0 0 0 0
…
420,427,435

DepositSweep.sol 0 0 0 0
…
569,572,574

EcdsaLib.sol 100 100 100 100

Fraud.sol 0 0 0 0 … 576,577,578

Heartbeat.sol 100 100 100 100

IRelay.sol 100 100 100 100

MovingFunds.sol 0 0 0 0 … 8,1069,1072

Redemption.sol 0 0 0 0 … 6,1191,1193

RedemptionWatchtower.sol 0 0 0 0 … 618,620,621

VendingMachine.sol 0 0 0 0 … 309,310,311

VendingMachineV2.sol 0 0 0 0 … 109,110,112

VendingMachineV3.sol 0 0 0 0 … 129,130,132

WalletProposalValidator.sol 0 0 0 0
…
877,893,898

Wallets.sol 0 0 0 0 … 706,717,720

contracts/hardhat-
dependency-
compiler/@keep-
network/ecdsa/contracts/

100 100 100 100

WalletRegistry.sol 100 100 100 100

contracts/hardhat-
dependency-
compiler/@openzeppelin/
contracts/proxy/transpare
nt/

100 100 100 100

File % Stmts % Branch % Funcs % Lines Uncovered
Lines

ProxyAdmin.sol 100 100 100 100

TransparentUpgradeablePr
oxy.sol

100 100 100 100

contracts/integrator/ 100 87.5 100 100

AbstractTBTCDepositor.sol 100 87.5 100 100

IBridge.sol 100 100 100 100

ITBTCVault.sol 100 100 100 100

contracts/l2/ 50.38 46.53 59.09 48.6

L1BitcoinDepositor.sol 0 0 0 0
…
634,636,651

L2BitcoinDepositor.sol 0 0 0 0 … 175,181,186

L2TBTC.sol 100 97.62 100 100

L2WormholeGateway.sol 100 81.25 100 100

Wormhole.sol 100 100 100 100

contracts/maintainer/ 0 0 0 0

MaintainerProxy.sol 0 0 0 0
…
536,553,558

contracts/relay/ 82.93 68.37 66.67 80.31

LightRelay.sol 100 90.54 100 98.08 438,439

LightRelayMaintainerProxy.
sol

0 0 0 0 … 138,140,142

contracts/test/ 65 33.33 56.9 56.36

BankStub.sol 100 100 0 0 9

BridgeStub.sol 0 0 0 0 … 158,166,172

HeartbeatStub.sol 100 100 100 100

LightRelayStub.sol 100 100 100 100

ReceiveApprovalStub.sol 0 0 0 0 23,24,27,31

SepoliaLightRelay.sol 0 0 0 0 41,45,46

SystemTestRelay.sol 75 100 50 50 18,22,38,42

TestBitcoinTx.sol 100 100 100 100

TestERC20.sol 100 100 100 100

File % Stmts % Branch % Funcs % Lines Uncovered
Lines

TestERC721.sol 100 100 100 100

TestEcdsaLib.sol 100 100 100 100

TestTBTCDepositor.sol 95.65 57.14 88.24 95.24 163,225

WormholeBridgeStub.sol 90 100 87.5 92.31 123

contracts/token/ 100 100 100 100

TBTC.sol 100 100 100 100

contracts/vault/ 24.17 15 24.44 22.09

DonationVault.sol 100 100 100 100

IVault.sol 100 100 100 100

TBTCOptimisticMinting.sol 6.35 2.27 9.09 5.38 … 560,561,562

TBTCVault.sol 23.81 13.16 22.22 25
…
343,344,345

All files 19.52 16.64 21.12 18.44

Coverage for thesis/mezo-portal

File % Stmts % Branch % Funcs % Lines Uncovered
Lines

contracts/ 100 93.59 100 98.23

BitcoinDepositor.sol 100 92.86 100 95.45 198

Portal.sol 100 93.75 100 98.9 162

contracts/interfaces/ 100 100 100 100

IApproveAndCall.sol 100 100 100 100

IReceiveApproval.sol 100 100 100 100

contracts/tests/ 90.91 50 100 92.31

MockERC20.sol 83.33 50 100 83.33 36

MockTBTC.sol 100 50 100 100

contracts/tests/upgrades/ 10.53 3.85 13.95 8.33

PortalV2.sol 31.03 10.61 40 24.72
…
498,506,516

PortalV2MisplacedSlot.sol 0 0 0 0
…
482,490,500

PortalV2MissingSlot.sol 0 0 0 0
…
478,486,496

File % Stmts % Branch % Funcs % Lines Uncovered
Lines

All files 39.61 31.2 43.94 37.18

Coverage for thesis/orangekit

File % Stmts % Branch % Funcs % Lines Uncovered
Lines

contracts/ 99.18 91.96 97.92 96.37

BitcoinSafeOwner.sol 100 93.1 100 96.7 172,190,219

ERC1271.sol 100 100 100 100

EmergencyGovernance.sol 100 92.86 100 91.67 64

LegacyERC1271.sol 100 100 100 100

OrangeKitDeployer.sol 100 87.5 100 96 164

OrangeKitSafeFactory.sol 96.88 93.33 93.33 96.77 100,175

Proxy.sol 100 50 100 100

contracts/test/ 27 12.5 45 31.54

BitcoinSafeOwnerHarness.s
ol

100 100 100 100

BitcoinSafeOwnerV2.sol 7.58 8.93 16.67 12.36 … 574,576,591

OrangeKitSafeFactoryV2.s
ol

58.62 20.83 56.25 56.36 … 407,409,412

TestERC20.sol 100 100 100 100

All files 66.67 58.85 73.86 68.13

Changelog
2024-05-03 - Initial report
2024-05-24 - Final report

About Quantstamp
Quantstamp is a global leader in blockchain security. Founded in 2017, Quantstamp’s mission is to securely onboard the next billion users to Web3
through its best-in-class Web3 security products and services.

Quantstamp’s team consists of cybersecurity experts hailing from globally recognized organizations including Microsoft, AWS, BMW, Meta, and
the Ethereum Foundation. Quantstamp engineers hold PhDs or advanced computer science degrees, with decades of combined experience in
formal verification, static analysis, blockchain audits, penetration testing, and original leading-edge research.

To date, Quantstamp has performed more than 500 audits and secured over $200 billion in digital asset risk from hackers. Quantstamp has
worked with a diverse range of customers, including startups, category leaders and financial institutions. Brands that Quantstamp has worked
with include Ethereum 2.0, Binance, Visa, PayPal, Polygon, Avalanche, Curve, Solana, Compound, Lido, MakerDAO, Arbitrum, OpenSea and the
World Economic Forum.

Quantstamp’s collaborations and partnerships showcase our commitment to world-class research, development and security. We're honored to
work with some of the top names in the industry and proud to secure the future of web3.

Notable Collaborations & Customers:

Blockchains: Ethereum 2.0, Near, Flow, Avalanche, Solana, Cardano, Binance Smart Chain, Hedera Hashgraph, Tezos
DeFi: Curve, Compound, Maker, Lido, Polygon, Arbitrum, SushiSwap
NFT: OpenSea, Parallel, Dapper Labs, Decentraland, Sandbox, Axie Infinity, Illuvium, NBA Top Shot, Zora
Academic institutions: National University of Singapore, MIT

Timeliness of content

The content contained in the report is current as of the date appearing on the report and is subject to change without notice, unless indicated
otherwise by Quantstamp; however, Quantstamp does not guarantee or warrant the accuracy, timeliness, or completeness of any report you
access using the internet or other means, and assumes no obligation to update any information following publication or other making available of
the report to you by Quantstamp.

Notice of confidentiality

This report, including the content, data, and underlying methodologies, are subject to the confidentiality and feedback provisions in your
agreement with Quantstamp. These materials are not to be disclosed, extracted, copied, or distributed except to the extent expressly authorized
by Quantstamp.

Links to other websites

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Quantstamp. Such hyperlinks are
provided for your reference and convenience only, and are the exclusive responsibility of such web sites&aspo; owners. You agree that
Quantstamp are not responsible for the content or operation of such web sites, and that Quantstamp shall have no liability to you or any other
person or entity for the use of third-party web sites. Except as described below, a hyperlink from this web site to another web site does not imply
or mean that Quantstamp endorses the content on that web site or the operator or operations of that site. You are solely responsible for
determining the extent to which you may use any content at any other web sites to which you link from the report. Quantstamp assumes no
responsibility for the use of third-party software on any website and shall have no liability whatsoever to any person or entity for the accuracy or
completeness of any output generated by such software.

Disclaimer

The review and this report are provided on an as-is, where-is, and as-available basis. To the fullest extent permitted by law, Quantstamp
disclaims all warranties, expressed or implied, in connection with this report, its content, and the related services and products and your use
thereof, including, without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement. You agree
that your access and/or use of the report and other results of the review, including but not limited to any associated services, products,
protocols, platforms, content, and materials, will be at your sole risk. FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR
USAGE THEREOF, INCLUDING ANY ASSOCIATED SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF
FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE. This report is based on the scope of materials and documentation
provided for a limited review at the time provided. You acknowledge that Blockchain technology remains under development and is subject to
unknown risks and flaws and, as such, the report may not be complete or inclusive of all vulnerabilities. The review is limited to the materials
identified in the report and does not extend to the compiler layer, or any other areas beyond the programming language, or other programming
aspects that could present security risks. The report does not indicate the endorsement by Quantstamp of any particular project or team, nor
guarantee its security, and may not be represented as such. No third party is entitled to rely on the report in any way, including for the purpose of
making any decisions to buy or sell a product, service or any other asset. Quantstamp does not warrant, endorse, guarantee, or assume
responsibility for any product or service advertised or offered by a third party, or any open source or third-party software, code, libraries,
materials, or information linked to, called by, referenced by or accessible through the report, its content, or any related services and products,
any hyperlinked websites, or any other websites or mobile applications, and we will not be a party to or in any way be responsible for monitoring
any transaction between you and any third party. As with the purchase or use of a product or service through any medium or in any environment,
you should use your best judgment and exercise caution where appropriate.

© 2024 – Quantstamp, Inc. Mezo Portal

