/| Security Assessment 08.27.2025 - 09.08.2025

Bridge
Mezo

=/\LL_BLIRIN

Bridge - Mezo

Prepared by: < HALBORN
Last Updated 09/18/2025
Date of Engagement: August 27th, 2025 - September 8th, 2025

Summary

100°% ©® OF ALL REPORTED FINDINGS HAVE BEEN ADDRESSED

ALL FINDINGS D D D
9 (1] (0) 2 3 a4

TABLE OF CONTENTS

. Introduction

. Assessment summary

. Test approach and methodology

. Risk methodology

. Scope

. Assessment summary & findings overview
. Findings & Tech Details

N 00 o B W N

7.1 Double voting vulnerability through validator id reassignment
7.2 Reimbursement pool drain via attestation spam

7.3 Panic conditions in bridge module

7.4 Non atomicity token enabling allows fee bypass

7.5 Resource exhaustion via disabled erc20 token bridge out

7.6 Race condition in sidecar validator shuffling

7.7 Fee update after bridge commitment

7.8 Threshold stuck entries after validator removal

7.9 Missing events for administrative functions

was engaged by to perform a security assessment of the bridge implementation. The
assessment period began on August 27, 2025, and concluded on September 8, 2025. The assessment

was scoped to the codebase supplied to ([ElReal; commit hashes and additional details are provided in
the Scope section of this report.

The engagement broadly covered the Mezo bridge implementation components described in the provided
context: the Solidity contract MezoBridgeV2, and the Go bridge components located at

Iprecompile/assetsbridge, /x/bridge, and the sidecar at /ethereum/sidecar. Bridge-in functionality was
excluded from the scope, as it had previously been audited by another company and evaluated in a public

contest. The objective of the engagement was to identify security weaknesses and to provide concrete
remediation guidance for the Mezo bridge-out implementation and the associated validator and sidecar
logic.

https://github.com/thesis/mezo-portal/blob/main/solidity/contracts/MezoBridgeV2.sol
https://github.com/mezo-org/mezod/tree/main/precompile/assetsbridge
https://github.com/mezo-org/mezod/tree/main/x/bridge
https://github.com/mezo-org/mezod/tree/main/ethereum/sidecar

2. Assessment Summary

Nine days were allocated for this engagement and one full-time security engineer was assigned to review
the security of the repositories in scope. The assigned engineer possessed deep expertise in blockchain
and smart contract security, including hands-on experience with multiple blockchain protocols.

The objectives of this assessment were to:

- Identify potential security vulnerabilities within the and (SN project.

« Verify that the bridge functions as intended.

In summary, identified several areas for improvement to reduce the likelihood and impact of
security risks, which were mostly acknowledged by the ([S4RaSaa) The primary recommendations were:

B Validator identifiers should be stable, or attestation bitmaps should be cleaned

up on membership changes, to prevent double voting.

Sidecar validator shuffling should rely on atomic snapshots of validator sets to

avoid race conditions and inconsistent queueing.
B Withdrawal fees should be locked per commitment at bridge time and compared

against a user-specified maximum to prevent fee manipulation.

I Pending entries should be automatically re—-evaluated after validator removals so

that those meeting the new threshold complete without manual intervention.

B Administrative functions should emit indexed events with old and new values to

improve observability and auditability.

3. Test Approach And Methodology

A layered testing strategy was applied, combining code review, design analysis, and operational testing
techniques. The sequence of phases described in the supplied materials included research and scoping
(repository and RFC review), manual code review of critical paths in both and (g sources,
analysis of failure modes and edge cases, and review of sidecar submission logic. Effort was weighted
toward manual review for protocol and consensus logic (validator management, attestations, economic
flows), while automated scans were relied upon for standard checks; on-chain tests were described
conceptually for validation of attestation and token-enable interactions. The principal focus was placed
on canonical invariants (one-vote-per-validator, fee preservation, safe retry behavior) and on the
interaction surface between on-chain contracts and off-chain sidecars and validators.

Coverage was intended to be thorough for bridge-out related paths: attestation lifecycle

(BRGSO LENE RIS O VATAR O RR L EYIISEY), validator management
| addBridgeValidator @ removeBridgeValidator |MWVIIIEWEIRTI NIl validateAssetsUnlocked
withdrawBTC |EICHENEYIRPEREERITIIMPINEN c reateERC20TokenMapping M setMinBridgeOutAmount |

and sidecar submission queue behavior. Emphasis was placed on design-level vulnerabilities that could
permit economic abuse, liveness failures, or chain-halting conditions.

4. RISK METHODOLOGY

Every vulnerability and issue observed by Halborn is ranked based on two sets of Metrics and a Severity

Coefficient. This system is inspired by the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability captures the ease and technical means

by which vulnerabilities can be exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of the ranking with two factors:
Reversibility and Scope. These capture the impact of the vulnerability on the environment as well as the
number of users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and 10 corresponding to the
highest security risk. This provides an objective and accurate rating of the severity of security
vulnerabilities in smart contracts.

The system is designed to assist in identifying and prioritizing vulnerabilities based on their level of risk
to address the most critical issues in a timely manner.

41 EXPLOITABILITY

ATTACK ORIGIN [AO).

Captures whether the attack requires compromising a specific account.
ATTACK COST (AC).

Captures the cost of exploiting the vulnerability incurred by the attacker relative to sending a single
transaction on the relevant blockchain. Includes but is not limited to financial and computational cost.

ATTACK COMPLEXITY (AX):

Describes the conditions beyond the attacker’s control that must exist in order to exploit the
vulnerability. Includes but is not limited to macro situation, available third-party liquidity and regulatory

challenges.

METRICS:

EXPLOITABILITY METRIC (ME) METRIC VALUE NUMERICAL VALUE

.. Arbitrary (AO:A) 1

Attack Origin (AO) Specific (AO:S) 0.2
Low (AC:L) 1

Attack Cost (AC) Medium (AC:M) 0.67

High (AC:H) 0.33

EXPLOITABILITY METRIC (ME) METRIC VALUE NUMERICAL VALUE

Low (AX:L) 1
Attack Complexity (AX) Medium (AX:M) 0.67
High (AX:H) 0.33

Exploitability F is calculated using the following formula:

E:Hme

4.2 IMPACT
CONFIDENTIALITY (C).

Measures the impact to the confidentiality of the information resources managed by the contract due to
a successfully exploited vulnerability. Confidentiality refers to limiting access to authorized users only.

INTEGRITY (I):

Measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the
trustworthiness and veracity of data stored and/or processed on-chain. Integrity impact directly
affecting Deposit or Yield records is excluded.

AVAILABILITY ([(A):

Measures the impact to the availability of the impacted component resulting from a successfully
exploited vulnerability. This metric refers to smart contract features and functionality, not state.
Availability impact directly affecting Deposit or Yield is excluded.

DEPOSIT (D).
Measures the impact to the deposits made to the contract by either users or owners.
YIELD (Y):

Measures the impact to the yield generated by the contract for either users or owners.

METRICS.:
IMPACT METRIC (M) METRIC VALUE NUMERICAL VALUE
None (I:N) 0
Low (I:L) 0.25
Confidentiality (C) Medium (I:M) 0.5
High (I:H) 0.75

Critical (I:C) 1

IMPACT METRIC (M) METRIC VALUE NUMERICAL VALUE

None (I:N) 0
Low (I:L) 0.25

Integrity (1) Medium (I:M) 0.5
High (I:H) 0.75

Critical (I:C) 1

None (A:N) 0
Low (A:L) 0.25

Availability (A) Medium (A:M) 0.5
High (A:H) 0.75

Critical (A:C) 1

None (D:N) 0
Low (D:L) 0.25

Deposit (D) Medium (D:M) 0.5
High (D:H) 0.75

Critical (D:C) 1

None (Y:N) 0
Low (Y:L) 0.25

Yield (Y) Medium (Y:M) 0.5
High (Y:H) 0.75

Critical (Y:C) 1

Impact I is calculated using the following formula:

> my — max(my)
4

I = max(my) +

4.3 SEVERITY COEFFICIENT
REVERSIBILITY [R):

Describes the share of the exploited vulnerability effects that can be reversed. For upgradeable
contracts, assume the contract private key is available.

SCOPE (S):

Captures whether a vulnerability in one vulnerable contract impacts resources in other contracts.

METRICS:
SEVERITY COEFFICIENT (C) COEFFICIENT VALUE NUMERICAL VALUE
None (R:N) 1
Reversibility (7) Partial (R:P) 0.5
Full (R:F) 0.25
Changed (S:C) 1.25
Scope (s)

Unchanged (S:U) 1

Severity Coefficient C is obtained by the following product:

C=rs

The Vulnerability Severity Score .S is obtained by:

S = min(10, EIC * 10)

The score is rounded up to 1 decimal places.

45-6.9

REPOSITORY ~

(a) Repository:
(b) Assessed Commit ID:

(c) Items in scope:

x/bridge/module.go
x/bridge/types/errors.go
x/bridge/types/keys.go
x/bridge/types/assets_unlocked.go
x/bridge/types/assets_unlocked_test.go
x/bridge/types/params.go
x/bridge/types/query.pb.go
x/bridge/types/query.pb.gw.go
x/bridge/types/genesis.go
x/bridge/types/genesis.pb.go
x/bridge/types/genesis_test.go
x/bridge/types/interfaces.go
x/bridge/types/assets_locked.go
x/bridge/types/assets_locked_test.go
x/bridge/types/bridge.pb.go
x/bridge/types/erc20.go
x/bridge/types/erc20_test.go
x/bridge/keeper/outflow_limit_test.go
x/bridge/keeper/pause.go
x/bridge/keeper/pause_test.go
x/bridge/keeper/abci_test.go
x/bridge/keeper/assets_unlocked.go
x/bridge/keeper/assets_unlocked test.go
x/bridge/keeper/outflow_limit.go
x/bridge/keeper/abci.go
x/bridge/keeper/genesis.go
x/bridge/keeper/keeper.go
x/bridge/keeper/params.go
x/bridge/keeper/query_server.go
x/bridge/keeper/erc20.go
x/bridge/keeper/btc.go
x/bridge/keeper/assets_locked.go
x/bridge/abci/vote_extension.go
x/bridge/abci/vote_extension_test.go
x/bridge/abci/preblock_test.go
x/bridge/abci/proposal.go

https://github.com/mezo-org/mezod
https://github.com/mezo-org/mezod/commit/1ea1913a99363eed07b4b616140cc5e29adbcf85

x/bridge/abci/proposal_test.go
x/bridge/abci/interfaces.go
x/bridge/abci/preblock.go
x/bridge/abci/types/vote_extension.pb.go
x/bridge/abci/types/proposal.pb.go
x/bridge/client/cli/query.go
precompile/assetsbridge/pause_test.go
precompile/assetsbridge/setup_test.go
precompile/assetsbridge/byte_code.go
precompile/assetsbridge/min_amount.go
precompile/assetsbridge/min_amount_test.go
precompile/assetsbridge/outflow_limit.go
precompile/assetsbridge/outflow_limit_test.go
precompile/assetsbridge/pause.go
precompile/assetsbridge/abi.json
precompile/assetsbridge/assets_bridge.go
precompile/assetsbridge/bridge_out.go
precompile/assetsbridge/bridge_out_test.go
precompile/assetsbridge/IAssetsBridge.sol
precompile/assetsbridge/observability.go
precompile/assetsbridge/sequence_tip.go
precompile/assetsbridge/btc.go
precompile/assetsbridge/erc20.go
ethereum/sidecar/mock_contracts_test.qo
ethereum/sidecar/server.go
ethereum/sidecar/server_test.go
ethereum/sidecar/submission_queue.go
ethereum/sidecar/submission_queue_test.go
ethereum/sidecar/contracts.go
ethereum/sidecar/contracts_test.go
ethereum/sidecar/mock_bridge_worker_test.go
ethereum/sidecar/assets_unlocked_test.go
ethereum/sidecar/attestation_validator.go
ethereum/sidecar/attestation_validator_test.go
ethereum/sidecar/batch_attestation.go
ethereum/sidecar/batch_attestation_test.go
ethereum/sidecar/chain_test.go
ethereum/sidecar/assets_unlocked.go
ethereum/sidecar/client.go
ethereum/sidecar/client_mock.go
ethereum/sidecar/cli/ethereum_sidecar.go
ethereum/sidecar/cli/flags.go
ethereum/sidecar/mezotime/mezotime.go
ethereum/sidecar/types/ethereum_sidecar.pb.go

Out-of-Scope: External dependencies and economic attacks.

REMEDIATION COMMIT ID:

« a957af7
« a957af7

Out-of-Scope: New features/implementations after the remediation commit IDs.

6. ASSESSMENT SUMMARY & FINDINGS OVERVIEW

| CRITICAL J CIID | MEDIUM J | LOW
o o 2 3

INFORMATIONAL

a4
SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE
DOUBLE VOTING VULNERABILITY THROUGH MEDIUM PARTIALLY SOLVED -
VALIDATOR ID REASSIGNMENT 09/02/2025
REIMBURSEMENT POOL DRAIN VIA ATTESTATION MEDIUM RISK ACCEPTED -
SPAM 09/17/2025
RISK ACCEPTED -
PANIC CONDITIONS IN BRIDGE MODULE LOW
09/17/2025
NON ATOMICITY TOKEN ENABLING ALLOWS FEE LOW RISK ACCEPTED -

BYPASS 09/17/2025

RESOURCE EXHAUSTION VIA DISABLED ERC20 TOKEN
BRIDGE OUT

RACE CONDITION IN SIDECAR VALIDATOR SHUFFLING

RISK ACCEPTED -
09/17/2025

FEE UPDATE AFTER BRIDGE COMMITMENT

ACKNOWLEDGED -
09/17/2025

THRESHOLD STUCK ENTRIES AFTER VALIDATOR
REMOVAL

ACKNOWLEDGED -
09/17/2025

MISSING EVENTS FOR ADMINISTRATIVE FUNCTIONS

PARTIALLY SOLVED -
09/02/2025

ACKNOWLEDGED -
09/17/2025

7. FINDINGS 8 TECH DETAILS

7.1 DOUBLE VOTING VULNERABILITY THROUGH VALIDATOR
ID REASSIGNMENT

Description

The MezoBridge contract permits a single validator to cast multiple votes on the same withdrawal entry.
When validators are removed, validator IDs are reassigned but attestation bitmaps are left unchanged,
allowing remaining validators to attest again for entries on which they have already voted.

The core issue is that a single validator can vote multiple times on the same withdrawal entry, violating
the bridge's fundamental security assumption:

if (validatorIndex !'= lastValidatorIndex) {
address lastValidator = bridgeValidators[lastValidatorIndex];
bridgeValidators[validatorIndex] = lastValidator;
bridgeValidatorIDs[lastValidator] = validatorID;

0
1
2
3
4
5

Attack Scenario:

1. Initial State: ValidatorD (ID=4) attests to Entry2, setting bit 4 in the attestation bitmap.
2. Validator Removal: ValidatorB (ID=2) is removed from the validator set.

3. ID Reassignment: ValidatorD is reassigned from ID=4 to ID=2.

4. Double Vote: ValidatorD is able to attest to Entry2 again using the new ID=2, setting bit 2.

5. Result: Entry2 records two attestations while only a single physical validator has participated.

Impact:

- Bridge Threshold Bypass: Required attestation counts can be reached with fewer distinct validators
than intended.

- Consensus Manipulation: The security model, which assumes one vote per validator per entry, is
undermined.

Proof of Concept

The proof of concept is as follows:

import { ethers, helpers } from "hardhat"

import { loadFixture } from "@nomicfoundation/hardhat-toolbox/network-helpers"
import { expect } from "chai"

import { HardhatEthersSigner } from "@nomicfoundation/hardhat-ethers/signers”
import deployPortal from "./fixtures/deployPortal"

import { MezoBridge } from "../typechain"

const { createSnapshot, restoreSnapshot } = helpers.snapshot

0
1
2
3
4
5
6
V4
8
9

enum Chain {

// AssetsUnlocked struct matching the contract
16 | interface AssetsUnlocked {
17 unlockSequenceNumber: bigint
18 recipient: string // hex string for bytes type
19 token: string
20 amount: bigint
21 chain: number
2|3
23
24 | describe("MEZ0-01 PoC: Validator ID Reassignment Bug", () => {
25 let mezoBridge: MezoBridge
26 let deployer: HardhatEthersSigner
27 let validatorA: HardhatEthersSigner
28 let validatorB: HardhatEthersSigner
29 let validatorC: HardhatEthersSigner
30 let validatorD: HardhatEthersSigner
31 let mockERC20: any
32
33 before(async () => {
34 // Use the existing deployment fixture which properly sets up MezoBridge
gg const fixtures = await loadFixture(deployPortal)
37 mezoBridge = fixtures.mezoBridge
38 deployer = fixtures.deployer
39 validatorA = fixtures.validatorOne
40 validatorB = fixtures.validatorTwo
41 validatorC = fixtures.validatorThree
42 validatorD = fixtures.validatorFour
43 mockERC20 = fixtures. // Use the USDC mock from fixtures
44
45 // Enable the mock ERC20 token for bridging
46 await mezoBridge.connect(deployer).enableERC20Token(await mockERC20.getAddress(), 1n)
47
43 // Add 4 validators
49 await mezoBridge.connect(deployer).addBridgeValidator(validatorA.address) // ID = 1
50 await mezoBridge.connect(deployer).addBridgeValidator(validatorB.address) // ID = 2
51 await mezoBridge.connect(deployer).addBridgeValidator(validatorC.address) // ID = 3
52 await mezoBridge.connect(deployer).addBridgeValidator(validatorD.address) // ID = 4
53 D
54 h
55 describe("Validator ID reassignment causes attestation vote inheritance and valid orphan attes
56 let entrylHash: string
57 let entry2Hash: string
58 let entryl: AssetsUnlocked
28 let entry2: AssetsUnlocked
61 beforeCasync () => {
62 await createSnapshot()
63
o4 // Fund the MezoBridge with tokens so it can process withdrawals
65 const bridgeAddress = await mezoBridge.getAddress()
26 await mockERC20.connect(deployer).mint(bridgeAddress, ethers.parseEther("1000"))
%
68 // Create two different withdrawal entries
69 const Recipientl = ethers.hexlify(ethers.randomBytes(20))
70 const Recipient2 = ethers.hexlify(ethers.randomBytes(20))
71
2 entryl = {
73 unlockSequenceNumber: 1n,
74 recipient: Recipientl,
75 token: await mockERC20.getAddress(),
76 amount: 1000n,
77 chain: Chain. ,
78 3
79
80 entry2 = {
81 unlockSequenceNumber: 2n,
82 recipient: Recipient2,
83 token: await mockERC20.getAddress(),
84 amount: 2000n,
) chain: Chain. ,
86 3
87
38 // Calculate entry hashes
89 entrylHash = ethers.keccak256(
9 ethers.AbiCoder.defaultAbiCoder().encode(
il ["tuple(uint256,bytes,address,uint256,uint8)"],
92 [[entryl.unlockSequenceNumber, entryl.recipient, entryl.token, entryl.amount, entryl.c

)
94)

9 entry2Hash = ethers.keccak256(

74 ethers.AbiCoder.defaultAbiCoder().encode(

%8 ["tuple(uint256,bytes,address,uint256,uint8)"],

99 [[entry2.unlockSequenceNumber, entry2.recipient, entry2.token, entry2.amount, entry2.c
100)

101)

104 await mezoBridge.connect(validatorB).attestBridgeOut(entryl)
107 await mezoBridge.connect(validatorD).attestBridgeOut(entry2)

110 await mezoBridge.connect(deployer).removeBridgeValidator(validatorB.address)
111 15

113 afterCasync (O => {
114 await restoreSnapshot()
115 1)

117 1t("should show ValidatorD inherits ValidatorB's attestation for entryl, attestation for ent
119 expect(await mezoBridge.bridgeValidatorIDs(validatorB.address)).to.equal(@)
120 expect(await mezoBridge.bridgeValidatorIDs(validatorD.address)).to.equal(2)

123 const entrylAttestation = await mezoBridge.attestations(entrylHash)
124 expect((entrylAttestation >> 2n) & 1n).to.equal(ln)

127 const entry2Attestation = await mezoBridge.attestations(entry2Hash)
128 expect((entry2Attestation >> 4n) & 1n).to.equal(ln)
129 expect((entry2Attestation >> 2n) & 1n).to.equal(@n)

132 await mezoBridge.connect(validatorD).attestBridgeOut(entry2)

134 const newEntry2Attestation = await mezoBridge.attestations(entry2Hash)
135 expect((newEntry2Attestation >> 4n) & 1n).to.equal(ln)

136 expect((newEntry2Attestation >> 2n) & 1n).to.equal(ln)

138 1)

140 | 1

Recommendation

Consider implementing a comprehensive attestation cleanup mechanism when validator membership
changes to maintain system integrity. Upon validator removal, the system could automatically clear any
orphaned attestation bits from the affected validator's previous ID and provide a grace period for
legitimate pending entries to be re-evaluated.

Remediation Comment

PARTIALLY SOLVED: The Mezo team partially remediated this issue by implementing a two-step validator

removal process and will create a public document for bridge management processes. The issue remains

as governance-level mitigation rather than code fix.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:C/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:C/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:C/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:C/Y:N
https://github.com/mezo-org/mezod/issues/570

Remediation Hash
a957af79623005d817adb811899a3fc799ba386hb

7.2 REIMBURSEMENT POOL DRAIN VIA ATTESTATION SPAM

Description

A malicious validator can drain the ReimbursementPool by repeatedly calling EiadcERdIS e[Sk \vith
different entries. Each call triggers a gas refund regardless of whether the attestation is valid or reaches
the threshold, enabling profitable pool drainage.

As a result validators can systematically drain the reimbursement pool.

Code Location

In WIS, the Bl [0l function provides gas refunds for all attempts::

@ | function attestBridgeOut(AssetsUnlocked calldata entry)
1 external nonReentrant refundable(Refund(msg.sender, false, 1000)) {
2|3

Proof of Concept

The proof of concept is as follows:

O | import { ethers } from "hardhat"

1 | import { loadFixture } from "@nomicfoundation/hardhat-toolbox/network-helpers"

2 | import deployPortal from "./fixtures/deployPortal"

3

4 | describe("Minimal Drain Test", O => {

5 enum Chain { =01}

6

4 it("should show validator profit from reimbursement pool drain", async () => {

S const { mezoBridge, reimbursementPool, validatorOne, validatorTwo, validatorThree, deployer,
10

11 await mezoBridge.connect(deployer).addBridgeValidator(validatorOne.address)

12 await mezoBridge.connect(deployer).addBridgeValidator(validatorTwo.address)

13 await mezoBridge.connect(deployer).addBridgeValidator(validatorThree.address)

14 await mezoBridge.connect(deployer).updateReimbursementPool(await reimbursementPool .getAddres
15 await reimbursementPool.connect(governance).authorizeCawait mezoBridge.getAddress())

16

17

18 await deployer.sendTransaction({

) to: await reimbursementPool.getAddress(),

20 value: ethers.parseEther("1"),

al D

22

23

24 const initialValidatorBalance = await ethers.provider.getBalance(validatorOne.address)

25 console.log("Validator balance before:", ethers.formatEther(initialValidatorBalance), "ETH™)
26

27 const entry = {

28 unlockSequenceNumber: 1,

29 recipient: ethers.zeroPadValue("0x01", 20),

30 token: await mezoBridge.tbtcToken(),

31 amount: 1000000n,

32 chain: Chain. ,

33 1

34

35 await mezoBridge.connect(validatorOne).attestBridgeOut(entry)

36

37

38 const finalValidatorBalance = await ethers.provider.getBalance(validatorOne.address)

32 console.log("Validator balance after:", ethers.formatEther(finalValidatorBalance), "ETH")

const profit = finalValidatorBalance - initialValidatorBalance
console.log("Validator profit:", ethers.formatEther(profit), "ETH")

3
3

BVSS
AQ:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:H/Y:N (5.0)

Recommendation

The function should be modified so that gas refunds are issued only when an
attestation is accepted (for example, verified and having reached the required threshold). When an
attestation is not accepted, a refundable deposit should be required, or the refunded amount should be
deducted from the validator's stake. Additionally, per-validator rate limiting and a per-block call cap
should be implemented to prevent attestation spam from draining the .

Remediation Comment
RISK ACCEPTED: The Mezo team accepted the risk of this finding and stated the following:

We acknowledge the issue but decide to leave it unaddressed - the complexity and the gas cost of
remediation strongly outweigh the benefits. Attestations are submitted asynchronously, so
introducing deferred refunds requires an additional mechanism to manage them efficiently. The
issue can be mitigated on the operational level. First, the reimbursement pool is funded in small
batches. Second, during the PoA phase, misbehaving validators can be easily detected and quickly
removed by the governance. The attack does not lead to any profits - the goal of the refunds is
making the transaction cost-neutral, so this attack is actually pure griefing. Moreover, the
individual attestation mode is the fallback to the batch attestation mode and should be rarely used
in real-world scenarios.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:H/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:H/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:H/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:H/Y:N

7.3 PANIC CONDITIONS IN BRIDGE MODULE

Description

Multiple panic conditions are present in the bridge module and in the sidecar. These panic points could
cause chain execution to halt if triggered by corrupted state or unanticipated edge cases. If any panic
condition is triggered, manual intervention is required to recover.

These panics appear to have been implemented as intentional circuit breakers to prevent further state
corruption. This design choice is potentially hazardous because any unexpected edge case can halt the
entire chain, and no graceful degradation or automated recovery mechanisms are provided.

Code Location

1. Unmarshaling panics in {RESEEIVEECIS I RTIe =l Mo}

err := sequenceTip.Unmarshal(bz)
if err != nil {
panicCerr)

2. Supply invariant panic in [P I M[e]:

if Iminted.Sub(burnt).Equal(supply) {
panic(fmt.Sprintf("supply of BTC is not balanced: minted %s, burnt %s",
minted.String(), burnt.String()))

3. Invalid token address panic in (RS EIAIEPA N [):

mezoToken, err := evmtypes.HexAddressToBytes(v.MezoToken)
if err != nil {
panic(fmt.Sprintf("invalid mezo token address in state %v: %v",
v.MezoToken, err))

4. Consensus violation panic in ElehVAge]s e o}:

mezoToken, err := evmtypes.HexAddressToBytes(v.MezoToken)
if err != nil {
panic(fmt.Sprintf("invalid mezo token address in state %v: %v",
v.MezoToken, err))

5. Sidecar initialization panics in QEUSEILVAR I FAT-a 1M [}

panic(fmt.Sprintf("failed to connect to the Ethereum network: %v", err))

panic(fmt.Sprintf("failed to initialize MezoBridge contract: %v", err))

panic(fmt.Sprintf("failed to get bridge validator ID: %v", err))

SRS CLETES IR SERIANE e thereum/sidecar/batch_attestation.go §

103

104 | panic(fmt.Sprintf("unable to sign batch attestation payload: %v", err))

BVSS
AQ:A/AC:L/AX:H/R:N/S:C/C:N/A:C/I:N/D:N/Y:N (4.1)

Recommendation

All calls should be removed and replaced with explicit error returns and centralized invariant
handling. Consensus-critical checks must be enforced via the [ACEERVEISEIR SRk daYA LiSing
non-panicking handlers that emit alerts and trigger governed recovery or safe block rejection.
Unmarshalling failures must be treated as recoverable errors, with defined validation or migration paths
and events to support manual remediation. Sidecar initialization and signing errors must be handled

using structured error values, retry/backoff policies, health checks, and supervised restart mechanisms
instead of panics.

Remediation Comment

RISK ACCEPTED: The Mezo team accepted the risk of this finding and stated the following:

All panic conditions are intentional design decisions for fail-fast behavior and state protection. No
remediation needed as behavior is by design.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:H/R:N/S:C/C:N/A:C/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:H/R:N/S:C/C:N/A:C/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:H/R:N/S:C/C:N/A:C/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:H/R:N/S:C/C:N/A:C/I:N/D:N/Y:N

7.4 NON ATOMICITY TOKEN ENABLING ALLOWS FEE BYPASS

Description

Token enabling requires two separate transactions on Mezo, which creates a potential window that
allows withdrawal fees to be bypassed due to a zero minimum bridge amount and integer-division
rounding effects.

Token enabling on Mezo is performed in two transactions:

assetsBridge.createERC20TokenMapping(sourceToken, mezoToken)

assetsBridge.setMinBridgeOutAmount(mezoToken, minAmount)

Between these transactions, a zero minimum is in effect and bridging is permitted without the intended
minimum threshold, enabling fee bypasses. While exploitation is likely unprofitable in many cases
because of Mezo-side transaction costs, the issue becomes more significant as fee levels decrease. The
primary impacts are:

« Temporary bypass of withdrawal fees during token setup
« Inconsistent fee collection for small transfer amounts
« Protocol revenue loss during the race-condition window

Attack Scenario

RN Al I 1 [iad-Te W c reateERC20TokenMapping (TOKEN_A, MEZO_TOKEN_A)
2. Race-condition window: The token is bridgeable with a zero minimum

3. Attacker exploits: Multiple {oIgRelsf=0[Vhdl calls with small amounts are executed and fees are calculated
as zero

R L EUEE TR PRI LR setMinBridgeOutAmount (MEZO_TOKEN_A, properMinimum)

The attack is constrained by several limitations:

« Mezo gas must be paid for each transaction

« Mezo transaction costs will often exceed the fee savings on the originating chain
« Real token balances on Mezo are required to perform the withdrawals

« Exploitation is limited to the narrow time window between the two transactions

Code Location

In QUEEA L VA VA NS VA VL B SN G ML), the minimum defaults to zero when no value is set:

202 | if len(bz) == 0 {
203 return math.ZeroInt()

204 | 3}

In RIS, the Ethereum-side fee calculation uses integer division that rounds down to zero
for sufficiently small amounts:

uint256 feeAmount = (Camount * withdrawalFee) / 10000;

BVSS
AQ:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:N/Y:M (3.4)

Recommendation

Ensure token enabling is performed atomically by requiring the minimum bridge amount to be set in the
same transaction that creates the mapping or by blocking until a non-zero minimum
is stored (i.e., reject bridge operations when). Additionally, the fee calculation should be
adjusted to avoid zero results from integer division by rounding up or enforcing a minimum fee (for

—

XEIEY fecAmount = max((amount * withdrawalFee + 10000 - 1) / 10000, 1)

Remediation Comment
RISK ACCEPTED: The Mezo team accepted the risk of this finding and stated the following:

We acknowledge that, but the actual impact is negligible. First, the governance is typically a SAFE
account and does transactions like such in batches. We will also create a public document

describing the bridge management processes to guide the governance (https://github.com/mezo-

org/mezod/issues/570) around actions like this. Last but not least, even if the issue occurs, the

amounts that allow bypassing the fee must be very small, so the amount of potentially lost fees is

quite insignificant.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:N/Y:M
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:N/Y:M
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:N/Y:M
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:N/Y:M
https://github.com/mezo-org/mezod/issues/570
https://github.com/mezo-org/mezod/issues/570

7.5 RESOURCE EXHAUSTION VIA DISABLED ERC20 TOKEN
BRIDGE OUT

Description
When an ERC20 token is enabled for bridge-out on Mezo but is not enabled on the Ethereum MezoBridge

contract, validators are caused to enter infinite retry loops that generate continuous failed Ethereum
transactions, resulting in severe resource exhaustion.

1. Bridge Out Succeeds on Mezo: A token mapping is present, funds are burned, and an

XISV AN I GLell cvent is emitted.

2. Attestation Fails on Ethereum: The NEIS B SIS Al @R ca!l reverts with
InvalidToken(token) }

3. Infinite Retry Loop: Validators retry every 10 seconds without termination.

Impact Analysis
Potential Resource Exhaustion Scenarios

Scenarlo A: Transaction Simulation [Lower Impact)
If go-ethereum's QEELEEIA4®B Mmethod performs a pre-send simulation:

« Gas Estimation Failure: Transaction construction is expected to fail due to the predicted revert.
« No Network Transactions: Failed attempts are not propagated to the Ethereum network.
« CPU/Memory Impact: Continuous local simulation attempts occur every 10 seconds.

« Cost: Minimal, limited to local computation.

Scenarlo B: Actual Transaction Submission (Higher iImpact)
If transactions are submitted without pre-simulation:

« Continuous Failed Transactions: A new Ethereum transaction is created every 10 seconds per
validator for each stuck sequence.

« Gas Burn Rate: Approximately 0.0006 ETH per attempt, equating to roughly 5.18 ETH/day per
validator per stuck sequence.

« Blockchain Bloat: Thousands of failed transactions are permanently recorded on-chain.

« Network Congestion: Failed transactions compete with legitimate traffic, increasing congestion and
latency.

Code Location

Il bridge_out.go

if _, ok := GetERC20TokenMappingFromMezoToken(token); !ok {

return fmt.Errorf("unsupported token")

}

Isl}l MezoBridge.sol §

485
486 | if (entry.token !'= _tbtcToken &% ERC20Tokens[entry.token] == 0) {

487 revert InvalidToken(entry.token);
488 | }

Il server.go§

for i = 0; ; i++ {

ifi>0 {
time.After(attestationProcessBackoff)
%

tx, err := s.bridgeContract.AttestBridgeOut(bridgeAssetsUnlocked)
if err != nil {

continue

3

break

BVSS
AQ:A/AC:L/AX:M/R:N/S:U/C:N/A:N/1:N/D:M/Y:N (3.4)

Recommendation

The bridge-out flow must be modified so that token enablement is verified against the on-chain

IFA T Mo [IS S NOPAARI NI mapping (or a trusted on-chain view) prior to burning or emitting
PSR e Validators must be modified to perform a pre-send (ARG INY CRSlEIaad) check

and to cease retrying after a configurable maximum number of attempts (or to mark the sequence as
permanently stuck and raise an alert), in order to prevent infinite failed transactions and resource
exhaustion.

Remediation Comment

RISK ACCEPTED: The Mezo team accepted the risk of this finding and stated the following:

We acknowledge, but this is again strongly dependent on the proper governance processes. We will
provide a public document describing the bridge management to guide the governance
(https://github.com/mezo-org/mezod/issues/570) and prevent issues like this. Moreover, we

consider the part about resource exhaustion as potentially invalid. Indeed, the validators will retry
indefinitely for the problematic request (which is intended and aims to make issues like this
immediately visible from the monitoring system), but the contract binding implemented in the
Ethereum sidecar and used to submit transactions always does the gas estimation prior to the

actual transaction. That said, validators wouldn’t burn actual funds for failing transactions.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:M/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:M/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:M/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:M/Y:N
https://github.com/mezo-org/mezod/issues/570

7.6 RACE CONDITION IN SIDECAR VALIDATOR SHUFFLING

// INFORMATIONAL

Description
A race condition is present in the sidecar submission-queue mechanism when validators are added or

removed while attestation processing is ongoing. This causes sidecar shuffles to be computed against
different validator-array sizes, producing conflicting submission timings.

Impact

« Queue collision: Concurrent submissions by multiple validators are enabled (intended staggering is
negated).

« Missing attestations: Incorrect submission delays may be calculated for some validators, causing

attestations to be omitted or submitted outside expected windows.

« Inconsistent behavior: Different sidecars may operate under different validator-set assumptions,

producing non-deterministic submission ordering across nodes.

Attack Scenario

1. Fallback mode is triggered: A batch attestation attempt fails and the system falls back to individual
submissions.

2. Sidecar A queries: (IS ELSTEIC I g I A @ NENCY.

3. An admin adds a validator: A new validator is registered on the bridge.

4. Sidecar B queries: BIgLLEELISGEN TR @NENGY .

5. Different shuffles are computed:
- Sidecar A shuffles using the same seed.

- Sidecar B shuffles NI MMl Using the same seed.

6. Result: A single validator is assigned different queue positions by different sidecars, producing
submission conflicts.

Code Location

In , a deterministic shuffle is used by the sidecar to stagger validator attestation
submissions:

func (s *submissionQueue) calculateSubmissionQueue(sequenceNumber *big.Int) ([Juint8, error) {
validatorCount, err := s.bridgeContract.BridgeValidatorsCount()

validatorIDs := make([Juint8, count)

for i := uint64(0); i < count; i++ {
validatorIDs[i] = uint8(i + 1)

}

seed := sequenceNumber.Int64()
return s.shuffleValidatorIDs(validatorIDs, seed), nil

BVSS
AQ:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:L/D:N/Y:N (1.7)

Recommendation

A validator shuffle must be computed from a canonical, atomic snapshot of validator IDs obtained via a

single read (call FISRLEVEASLERLISI®NINM 2nd fetch all IDs once). That snapshot must be used for

shuffling. The read must be protected either by a local mutex or transactional lock, or by including and
validating an on-chain (a0 (IR (re-check the count/epoch and abort or retry if changed). This
prevents inconsistent shuffles when validators are added or removed.

Remediation Comment
ACKNOWLEDGED: The Mezo team acknowledged this issue and stated the following:

We acknowledge this finding, but the impact is negligible. Two validators may submit an
attestation at the same time, worst case scenario is that a validator will submit a surplus
attestation, which does not even lead to any cost on the validators end as a proper transaction will
be reimbursed from the pool.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:L/D:N/Y:N

7.7 FEE UPDATE AFTER BRIDGE COMMITMENT

// INFORMATIONAL

Description

When assets are bridged from Mezo to Ethereum, the withdrawal fee displayed at bridge time is not
locked in. The fee is instead sampled at withdrawal time. This permits the owner to increase the
withdrawal fee after users have locked their funds, which forces users to either accept the higher fee or
forfeit timely recovery of their assets.

Attack Scenario

1. A user bridges 1 BTC from Mezo when QAR IENERZCRERNNL] (1%).

2. Validators attest to the withdrawal entry.

3. The owner calls EEISRGLIEWEIESIXEGTIR increasing the fee to 5%.

4. The user calls QMAGCIEIINON cxpecting to be charged a 0.01 BTC fee.
5. The user is instead charged a 0.05 BTC fee (five times the expected amount).

Impact

« Broken user expectations: The fee displayed at bridge time may differ from the fee actually charged
at withdrawal.

« No protection mechanism: No mechanism is provided to set a maximum acceptable fee or to cancel
the withdrawal if the fee increases.

« Forced acceptance: Recovery of funds is conditioned on acceptance of any fee in effect at
withdrawal time.

Code Location

function _collectWithdrawalFee(address token, uint256 amount) internal {
uint256 _withdrawalFee = withdrawalFee;

uint256 feeAmount = (Camount * _withdrawalFee) / BASIS_POINTS_DENOMINATOR;

BVSS
AQ:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:M/Y:N (1.0)

Recommendation

The withdrawal fee should be recorded at bridge time and persisted per withdrawal commitment (for

example, WEI M NAT-EEPAEIRTE Nk AT D MR I FRAILRdAEY) so that the withdrawal logic uses the stored

historical fee rather than the mutable global (ERILIEINEIREEY. An optional parameter should be
accepted by the function and compared to the stored fee so that the call is automatically

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:M/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:M/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:M/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:M/Y:N

reverted if the fee exceeds the user's expected cap. Events should be emitted for fee changes and for

commitments.

Remediation Comment
ACKNOWLEDGED: The Mezo team acknowledged this issue and stated the following:

We acknowledge this finding. This can be mitigated on the governance level by limiting any fee
changes to periods without active bridge-out requests. In practice, this fee will rarely change. Last
but not least, we plan to introduce a flat fee and modify the fee mechanism so we will remove the

current percentage fee and eliminate this issue completely.

7.8 THRESHOLD STUCK ENTRIES AFTER VALIDATOR
REMOVAL

// INFORMATIONAL

Description
A stuck-entry condition is observed when validators are removed after a partial set of attestations.

Entries that already hold a sufficient number of attestations for the reduced threshold can remain
uncompleted because an automatic completion path is not implemented. Manual completion is required

OWAEUILR attestBridgeOutWithSignatures §

Scenario

1. Initial setup: Eleven validators are configured (threshold = 8).

2. Partial attestation: Validators 1-7 attest entry E (7/8 is therefore insufficient).

3. Validator removal: Validators 8-11 are removed.

4. New state: Seven validators remain (threshold = 5).

5. Result: Entry E contains seven attestations but remains stuck (7 = 5 yet no automatic completion is
triggered).

Impact

« User funds are rendered unclaimable: Legitimate withdrawals are prevented from being processed
automatically.

« Manual intervention is required: Off-chain signature collection must be performed to call

FRRaERd Ko [o[SUVATARE IR RERNA o an additional validator must be added so that
CRAAIRd I K[kl can be called to complete the entry.

Code Location

The ElMEAIS NS function performs the threshold check only after a new attestation is added:

function attestBridgeOut(AssetsUnlocked calldata entry) external {

attestations[attestationKey] = updatedBitmap;

if (_countSetBits(updatedBitmap) < attestationThreshold()) {
return;
}

_withdraw(entry);

Proof of Concept

The proof of concept is as follows:

describe("Threshold Stuck Entries", () => {
it("demonstrates entry stuck after validator removal", async () => {

for (let i =0; i < 11; i++) {

await mezoBridge.addBridgeValidator(validators[i].address);

}

for (let 1 =0; 1 < 7; i++) {
await mezoBridge.connect(validators[i]).attestBridgeOut(entry);

}

for (let i = 7; i < 11; i++) {
await mezoBridge.removeBridgeValidator(validators[i].address);

}

const attestations = await mezoBridge.attestationsCount(entryHash);
const threshold = await mezoBridge.attestationThreshold();
const completed = await mezoBridge.confirmedUnlocks(entry.unlockSequenceNumber);

console.log(Attestations: ${attestations}, Threshold: ${threshold}, Completed: ${completed}

expect(attestations).to.be.gte(threshold);
expect(completed).to.be.false;
3

BVSS
AQ:S/AC:L/AX:M/R:N/S:U/C:N/A:H/I:N/D:N/Y:N (1.0)

Recommendation

Ensure that validator removal triggers a re-evaluation of all pending entries so that any entry with a
sufficient number of existing attestations relative to the new threshold is automatically completed
without requiring manual off-chain intervention. This can be achieved by maintaining per-entry
attestation counts or enqueuing entries for re-check when validator sets change, ensuring that
legitimate withdrawals are not stuck indefinitely and that system state remains consistent even after
validator membership updates.

Remediation Comment

PARTIALLY SOLVED: The Mezo team partially remediated this issue by implementing a two-step validator

removal process. Manual unblocking possible through [EXagERdIg e[[IV A AR IR IERIGEY function.

Remediation Hash
a957af79623005d817adb811899a3fc799ba386hb

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:M/R:N/S:U/C:N/A:H/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:M/R:N/S:U/C:N/A:H/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:M/R:N/S:U/C:N/A:H/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:M/R:N/S:U/C:N/A:H/I:N/D:N/Y:N

7.9 MISSING EVENTS FOR ADMINISTRATIVE FUNCTIONS

// INFORMATIONAL

Description

Administrative functions in the bridge precompile don't emit events, reducing observability for monitoring
and auditing.

Affected Functions

Functions without events:

o BRAGENHHLSNGEE - Changes pauser address silently
o GENHEEIgLEMRIIEIIE - Pauses bridge without notification
o BERS R ERISRIN - Updates limits without trace

Functions with proper events (for comparison):

I SetMinBridgeOutAmountMethod
O CreateERC20TokenMappingMethod
M BridgeQutMethod

BVSS
AQ:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation
Events should be emitted for all administrative, state-changing functions (e.g., EGEINEERNS L],

RETVC TG Xe (s SO VRIS e Lol IO INR R MR L BRI T Lol). Event parameters should be indexed for affected

addresses and should include explicit fields for previous and new values, plus a timestamp or block
number, to ensure off-chain observability and auditability.

Remediation Comment

ACKNOWLEDGED: The Mezo team acknowledged this issue and stated the following:

We acknowledge this finding. We consider adding the proposed events as part of

https://qgithub.com/mezo-orqg/mezod/issues/571. Doing it is a breaking upgrade and requires a
chain halt, so we will try to pack it with one of the future upgrades.

Halborn strongly recommends conducting a follow-up assessment of the project either within six months or immediately
following any material changes to the codebase, whichever comes first. This approach is crucial for maintaining the
project’s integrity and addressing potential vulnerabilities introduced by code modifications.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://github.com/mezo-org/mezod/issues/571

