
Mezo
Mezo Smart Contracts

Initial Report // April 5, 2024

Final Report // April 19, 2024

Security
Audit Report

Team Members

Bernd Artmüller // Security Auditor

J4X // Security Auditor

Bashir Abu-Amr // Head of Delivery

2

Table of Contents

41.0 Scope
1.1 Technical Scope

1.2 Documentation

1.3 Reference:

52.0 Executive Summary
2.1 Schedule

2.2 Overview

2.3 Threat Model

2.4 Security by Design

2.5 Secure Implementation

2.6 Use of Dependencies

2.7 Tests

2.8 Project Documentation

73.0 Key Findings Table

84.0 Findings
4.1 The and Contracts can be Upgraded with a Non-Contract Address
Resulting in a Non-Functional Proxy

BitcoinSafeOwner OrangeKitSafeFactory

4.2 Two-Step Ownership Transfer is Recommended

4.3 Rename the ErrorEmergencyUpgradesDisabled

4.4 Private and Internal Functions Do Not Adhere to the Solidity Style Guide

4.5 Comment Includes Spelling Issue

4.6 Missing NatSpec Return Value Documentation

4.7 Add Indexing to Events With Multiple Parameters

4.8 Missing Derived Address Prefix Allows Users to Pass Compressed P2PKH Signatures as P2WPKH Signatures

4.9 Emit an Additional Event During Emergency Upgrades of the ContractBitcoinSafeOwner
Thesis Defense // Security Audit Report

Mezo

3

4.10 Avoid Using the Latest Solidity Compiler Version to Reduce Compiler Bug Risks

4.11 No Protection Against Outdated Version Upgrade

165.0 Appendix A
5.1 Severity Rating Definitions

176.0 Appendix B
6.1 Thesis Defense Disclaimer

Thesis Defense // Security Audit Report

Mezo

4

Thesis Defense serves as the auditing services arm within Thesis, Inc., the venture studio behind tBTC,

Fold, Taho, Etcher, and Mezo. Our team of security auditors have carried out hundreds of security audits

for decentralized systems across a number of technologies including smart contracts, wallets and

browser extensions, bridges, node implementations, cryptographic protocols, and dApps. We offer our

services within a variety of ecosystems including Bitcoin, Ethereum + EVMs, Stacks, Cosmos / Cosmos

SDK, NEAR and more.

Thesis Defense will employ the Thesis Defense Audit Approach and Audit Process to the in scope

service. In the event that certain processes and methodologies are not applicable to the in scope

services, we will indicate as such in individual audit or design review SOWs. In addition, Thesis Defense

provides clear guidance on successful Security Audit Preparation.

Technical Scope

Repository: https://github.com/thesis/orangekit/tree/main/solidity

Audit Commit: 44355ad8dbac7df34d069fca2720c9e3f96b0ff9

Documentation

Technical documentation and architectural diagram:RFC: OrangeKit Bitcoin Account

Metaprotocol

The instructions for setting up the repository and running tests are available in the README file

Reference:

Message signing - Bitcoin Wiki. (n.d.)

About esis Defense

Scope

Section_1.0

Thesis Defense // Security Audit Report

Mezo

https://thesis.co/defense
https://thesis.co/defense#team
https://medium.com/thesis-defense/thesis-defense-audit-approach-75949aab90fb
https://medium.com/thesis-defense/security-audit-process-what-to-expect-when-youre-getting-a-thesis-defense-security-audit-3845b82bb027
https://medium.com/thesis-defense/maximizing-security-audit-success-a-comprehensive-guide-to-audit-preparation-16d43b09715d
https://github.com/thesis/orangekit/tree/main/solidity
https://github.com/thesis/orangekit/blob/f1ac7d82298e21a26e0c79000dfcea95f44b5b72/rfc/rfc.md
https://github.com/thesis/orangekit/blob/44355ad8dbac7df34d069fca2720c9e3f96b0ff9/solidity/README.md
https://en.bitcoin.it/wiki/Message_signing

5

Schedule

This security audit was conducted from April 1, 2024 to April 5, 2024 by 2 security auditors for a total of 2

person-weeks.

Overview

Thesis Defense conducted a manual code review of Mezo OrangeKit smart contract implementation.

The Mezo OrangeKit protocol allows users to interact with the Ethereum EVM ecosystem using their

Bitcoin private key. This is facilitated by using an ERC-4337 compatible Gnosis Safe and a custom

implementation of a Safe owner. This Safe owner smart contract can verify different Bitcoin signatures

and allows the user to control the actions of the Gnosis Safe by signing messages and sending them to

the Safe to execute.

Threat Model

For this review, our team considered a threat model whereby external components to the smart

contracts are untrusted but function as intended. These components include any user interface that

enables interaction with the protocol, any off-chain components that are an integral part of the system,

and any third-party dependencies or services that are necessary for the protocol to function as

intended. Furthermore, we considered the governance of the protocol to be not malicious. Due to the

usage of the battle-tested Gnosis Safe, the attack surface of the OrangeKit contracts is very limited.

Nevertheless, multiple threats were considered in the audit:

Forgeability of signatures

Replaying of signatures

Unauthorized access to the safe / deployer / factory

Unpredictability of addresses

The main attackers considered are attackers trying to pass invalid or already used signatures to get the

Gnosis Safe to act maliciously.

Security by Design

The OrangeKit system design is robust, and the protocol’s security has been considered and prioritized.

The usage of the Gnosis Safe contract instead of a custom implementation also supports this fact.

Throughout the code, authorization is correctly implemented, and many potential attack vectors are

already mitigated through various security measures. For instance, replaying transactions is prevented

by the Gnosis Safe contract by incorporating the chainid as well as an increasing nonce in the

message digest. The additional possibility of emergency upgrades through a trusted entity allows the

governance (Multisig) to take remediative action in case of a compromised implementation of the Safe

owner smart contract.

Secure Implementation

We found the code to be well-organized, properly documented, and adhering to best practices. We

investigated the security of the implementation of the two most sensitive areas: signature verification

and contract deployment to predictable addresses. As a result of our review, we did not identify any

critical security vulnerabilities.

Executive Summary

Section_2.0

Thesis Defense // Security Audit Report

Mezo

6

Use of Dependencies

We ran the pnpm audit dependency analysis tool and did not identify any issues in the use of Solidity

dependencies.

Tests

The OrangeKit repository contains unit and integration tests for the contracts in the scope of this

review, with 96.79% line and 93.52% branch coverage, in accordance with best practices.

We recommend adding tests for the OrangekitDeployer contract that try to redeploy the individual

contracts, which results in an error because they use the same salt and bytecode.

Project Documentation

The OrangeKit smart contracts are well documented in RFC: OrangeKit Bitcoin Account Metaprotocol,

provided by the client. This documentation encompasses detailed technical descriptions of the smart

contracts’ essential functions and is also supplemented by an architectural diagram. Moreover, the code

itself is well-commented.

In addition, we recommend making the available documentation publicly available to make it easier for

developers to inform themselves about the workings of the protocol.

Thesis Defense // Security Audit Report

Mezo

https://github.com/thesis/orangekit/blob/f1ac7d82298e21a26e0c79000dfcea95f44b5b72/rfc/rfc.md

7

Issues Severity Status

ISSUE #1 The BitcoinSafeOwner and

OrangeKitSafeFactory Contracts can be Upgraded with a
Non-Contract Address Resulting in a Non-Functional Proxy

ISSUE #2 Two-Step Ownership Transfer is Recommended

ISSUE #3 Rename the EmergencyUpgradesDisabled Error

ISSUE #4 Private and Internal Functions Do Not Adhere to the

Solidity Style Guide

ISSUE #5 Comment Includes Spelling Issue

ISSUE #6 Missing NatSpec Return Value Documentation

ISSUE #7 Add Indexing to Events With Multiple Parameters

ISSUE #8 Missing Derived Address Prefix Allows Users to Pass

Compressed P2PKH Signatures as P2WPKH Signatures

ISSUE #9 Emit an Additional Event During Emergency Upgrades

of the BitcoinSafeOwner Contract

ISSUE #10 Avoid Using the Latest Solidity Compiler Version to

Reduce Compiler Bug Risks

ISSUE #11 No Protection Against Outdated Version Upgrade

Severity definitions can be found in Appendix A

Key Findings Table

Section_3.0

Thesis Defense // Security Audit Report

Mezo

8

We describe the security issues identified during the security audit, along with their potential impact.

We also note areas for improvement and optimizations in accordance with best practices. This includes

recommendations to mitigate or remediate the issues we identify, in addition to their status before and

after the fix verification.

ISSUE#1

The BitcoinSafeOwner and OrangeKitSafeFactory
Contracts can be Upgraded with a Non-Contract Address
Resulting in a Non-Functional Proxy

Location

BitcoinSafeOwner.sol#L157-L162

OrangeKitSafeFactory.sol#L171-L176

Description

The BitcoinSafeOwner and OrangeKitSafeFactory contracts can be upgraded via the

upgradeSingleton function by changing the proxy’s implementation address, stored in singleton. The

address of the new implementation contract is validated to prevent the zero address, the proxy’s

address, or the address of the current implementation contract from being set as the new

implementation.

However, if the address provided does not refer to a contract, the upgrade will succeed due to the

proxy’s low-level delegatecall not reverting if the target is not a contract. As a result, the proxy will

be non-functioning and cannot be upgraded again as the upgrade functionality is not available.

Impact

The upgraded smart contracts are non-functional and cannot be upgraded again.

Recommendation

We recommend using the isContract function to check if the new implementation address is a

contract before proceeding with the upgrade.

Verification Status

The Mezo team has stated that a restrictive process for upgrades is in place such that for every upgrade,

there is a checklist reviewed by at least two developers, with all transactions simulated and reviewed in

Tenderly, and a required minimum number of technical people to sign a transaction. However, at the time

of this verification, the suggested remediation has not been implemented.

Findings

Section_4.0

Thesis Defense // Security Audit Report

Mezo

https://github.com/thesis/orangekit/blob/44355ad8dbac7df34d069fca2720c9e3f96b0ff9/solidity/contracts/BitcoinSafeOwner.sol#L157-L162
https://github.com/thesis/orangekit/blob/44355ad8dbac7df34d069fca2720c9e3f96b0ff9/solidity/contracts/OrangeKitSafeFactory.sol#L171-L176

9

ISSUE#2

Two-Step Ownership Transfer is Recommended

Location

OrangeKitSafeFactory.sol#L192-L199

Description

The OrangeKitSafeFactory implements an ownership mechanism that is used to allow the

EmergencyUpgrader to upgrade the singletons in case of a potential compromise. The functionality

currently only allows for a single-step ownership transfer, which could lead to issues if the ownership is

accidentally transferred to the wrong address.

Impact

If the ownership of the OrangeKitSafeFactory is transferred to an unintended address by accident it

will make it impossible for the EmergencyUpgrader to upgrade the singletons in the case of the used

one becoming vulnerable. This will result in new safes being deployed with a vulnerable version without a

way of preventing it.

Recommendation

We recommend implementing a two-step ownership transfer. This can be done by using an already

implemented library implementation like OpenZeppelin. To still grant the ownership to the

EmergencyUpgrader when calling initialize , the function can be adapted so that an owner

parameter can be passed that is set when initializing.

Verification Status

The Mezo team has stated that a restrictive process for upgrades is in place such that for every upgrade,

there is a checklist reviewed by at least two developers, with all transactions simulated and reviewed in

Tenderly, and a required minimum number of technical people to sign a transaction. However, at the time

of this verification, the suggested remediation has not been implemented.

ISSUE#3

Rename the EmergencyUpgradesDisabled Error

Location

EmergencyGovernance.sol#L28

Description

The OrangeKit protocol implements an emergency governance feature that allows a MultiSig controlled

by the protocol itself to upgrade the BitocinSafeOwner . To inform the deployed BitcoinSafeOwner

smart contracts what address currently holds the EmergencyUpgrader role, the

EmergencyGovernance smart contract is used. This smart contract can also be disabled by its owner,

which will make emergency upgrades impossible afterward. After the EmergencyGovernance was

disabled, the EmergencyUpgradesDisabled error is thrown at each call to its 3 functionalities:

���Retrieving the current emergency upgrader
Thesis Defense // Security Audit Report

Mezo

https://github.com/thesis/orangekit/blob/main/solidity/contracts/OrangeKitSafeFactory.sol#L192-L199
https://github.com/thesis/orangekit/blob/a686106e884867e829d04e38f6d26f06af051431/solidity/contracts/EmergencyGovernance.sol#L28

10

���Disabling the EmergencyGovernance

���Setting a new emergency upgrader

As the error’s name suggests, it is intended to be returned when the emergency governor tries to

upgrade a safe owner, but the EmergencyGovernance is already disabled. In the other two cases, the

error might lead to confusion.

Impact

None – no security impact.

Recommendation

We recommend splitting the error into three separate errors (which would increase overhead) or

renaming it to a more generic version that fits all three cases of reverting. One recommendation is to

rename the error to EmergencyGovernanceDisabled .

Verification Status

The Mezo team deployed the smart contracts without implementing the recommendation and stated

that they intend to apply them in the future.

ISSUE#4

Private and Internal Functions Do Not Adhere to the Solidity
Style Guide

Location

OrangeKitSafeFactory.sol#L208, L270, L322, L339, L359, L396

OrangeKitDeployer.sol#L137

BitcoinSafeOwner.sol#L278, L371, L398, L425, L456, L480, L492, L516, L539

Description

To ensure good code readability and prevent future issues, it is highly recommended that Solidity code

follow the Solidity Style Guide. The style guide states that non-external functions should be prefixed

with an underline. This currently needs to be implemented for many functions used in the protocol.

Impact

None – no security impact.

Recommendation

We recommend prefixing the private and internal functions accordingly.

Verification Status

The Mezo team deployed the smart contracts without implementing the issues identified in this report

and stated that they intend to address them in the future.

Thesis Defense // Security Audit Report

Mezo

https://github.com/thesis/orangekit/blob/a686106e884867e829d04e38f6d26f06af051431/solidity/contracts/OrangeKitSafeFactory.sol#L208
https://github.com/thesis/orangekit/blob/a686106e884867e829d04e38f6d26f06af051431/solidity/contracts/OrangeKitSafeFactory.sol#L270
https://github.com/thesis/orangekit/blob/a686106e884867e829d04e38f6d26f06af051431/solidity/contracts/OrangeKitSafeFactory.sol#L322
https://github.com/thesis/orangekit/blob/a686106e884867e829d04e38f6d26f06af051431/solidity/contracts/OrangeKitSafeFactory.sol#L339
https://github.com/thesis/orangekit/blob/a686106e884867e829d04e38f6d26f06af051431/solidity/contracts/OrangeKitSafeFactory.sol#L359
https://github.com/thesis/orangekit/blob/a686106e884867e829d04e38f6d26f06af051431/solidity/contracts/OrangeKitSafeFactory.sol#L396
https://github.com/thesis/orangekit/blob/a686106e884867e829d04e38f6d26f06af051431/solidity/contracts/OrangeKitDeployer.sol#L137
https://github.com/thesis/orangekit/blob/a686106e884867e829d04e38f6d26f06af051431/solidity/contracts/BitcoinSafeOwner.sol#L278
https://github.com/thesis/orangekit/blob/a686106e884867e829d04e38f6d26f06af051431/solidity/contracts/BitcoinSafeOwner.sol#L371
https://github.com/thesis/orangekit/blob/a686106e884867e829d04e38f6d26f06af051431/solidity/contracts/BitcoinSafeOwner.sol#L398
https://github.com/thesis/orangekit/blob/a686106e884867e829d04e38f6d26f06af051431/solidity/contracts/BitcoinSafeOwner.sol#L425
https://github.com/thesis/orangekit/blob/a686106e884867e829d04e38f6d26f06af051431/solidity/contracts/BitcoinSafeOwner.sol#L456
https://github.com/thesis/orangekit/blob/a686106e884867e829d04e38f6d26f06af051431/solidity/contracts/BitcoinSafeOwner.sol#L480
https://github.com/thesis/orangekit/blob/a686106e884867e829d04e38f6d26f06af051431/solidity/contracts/BitcoinSafeOwner.sol#L492
https://github.com/thesis/orangekit/blob/a686106e884867e829d04e38f6d26f06af051431/solidity/contracts/BitcoinSafeOwner.sol#L516
https://github.com/thesis/orangekit/blob/a686106e884867e829d04e38f6d26f06af051431/solidity/contracts/BitcoinSafeOwner.sol#L539
https://docs.soliditylang.org/en/latest/style-guide.html#underscore-prefix-for-non-external-functions-and-variables

11

ISSUE#5

Comment Includes Spelling Issue

Location

BitcoinSafeOwner.sol#L317

Description

One of the comments inside the BitcoinSafeOwner includes a typo in the word “varint” which should

correctly be “variant.”

Impact

None – no security impact.

Recommendation

We recommend fixing the spelling issue.

Verification Status

The Mezo team deployed the smart contracts without implementing the issues identified in this report

and stated that they intend to address them in the future.

ISSUE#6

Missing NatSpec Return Value Documentation

Location

BitcoinSafeOwner.sol#L127

EmergencyGovernance.sol#L44

LegacyERC1271.sol#L34

OrangeKitSafeFactory.sol#L99, L122, L208, L270

Description

It is recommended to use NatSpec documentation to improve code readability. Throughout the

codebase, the @return tag is used most of the time correctly to document the returned variables. Still,

some functions are fully missing the comment or have a comment describing the returned value but

with an incorrect tag.

Impact

None – no security impact.

Recommendation

We recommend documenting the return value in NatSpec for each of the functions.
Thesis Defense // Security Audit Report

Mezo

https://github.com/thesis/orangekit/blob/a686106e884867e829d04e38f6d26f06af051431/solidity/contracts/BitcoinSafeOwner.sol#L317
https://github.com/thesis/orangekit/blob/a686106e884867e829d04e38f6d26f06af051431/solidity/contracts/BitcoinSafeOwner.sol#L127
https://github.com/thesis/orangekit/blob/a686106e884867e829d04e38f6d26f06af051431/solidity/contracts/EmergencyGovernance.sol#L44
https://github.com/thesis/orangekit/blob/a686106e884867e829d04e38f6d26f06af051431/solidity/contracts/LegacyERC1271.sol#L34
https://github.com/thesis/orangekit/blob/a686106e884867e829d04e38f6d26f06af051431/solidity/contracts/OrangeKitSafeFactory.sol#L99
https://github.com/thesis/orangekit/blob/a686106e884867e829d04e38f6d26f06af051431/solidity/contracts/OrangeKitSafeFactory.sol#L122
https://github.com/thesis/orangekit/blob/a686106e884867e829d04e38f6d26f06af051431/solidity/contracts/OrangeKitSafeFactory.sol#L208
https://github.com/thesis/orangekit/blob/a686106e884867e829d04e38f6d26f06af051431/solidity/contracts/OrangeKitSafeFactory.sol#L270

12

Verification Status

The Mezo team deployed the smart contracts without implementing the issues identified in this report

and stated that they intend to address them in the future.

ISSUE#7

Add Indexing to Events With Multiple Parameters

Location

OrangeKitSafeFactory.sol#L39-L40

BitcoinSafeOwner.sol#L58

EmergencyGovernance.sol#L19

Description

The OrangeKit protocol correctly emits events on state changes. To make it easier to monitor these

events it is recommended to index them if they have more than one argument. This is correctly

implemented for one event but not for all.

Impact

None – no security impact.

Recommendation

We recommend indexing the mentioned events to improve monitoring abilities.

Verification Status

The Mezo team deployed the smart contracts without implementing the issues identified in this report

and stated that they intend to address them in the future.

ISSUE#8

Missing Derived Address Prefix Allows Users to Pass
Compressed P2PKH Signatures as P2WPKH Signatures

Location

BitcoinSafeOwner.sol#L456

Description

The OrangeKit protocol implements the BitcoinSafeOwner contract which can be used to verify

messages signed by a Bitcoin address. These messages can be verified in four ways depending on the

type of address that has encoded them. For the address types compressedP2PKH and P2WPKH the

signatures are verified the same way. The only way the contract distinguishes between them is by

checking the v value and then decreasing it by 8 if P2WPKH is detected.

Thesis Defense // Security Audit Report

Mezo

https://github.com/thesis/orangekit/blob/a686106e884867e829d04e38f6d26f06af051431/solidity/contracts/OrangeKitSafeFactory.sol#L39-L40
https://github.com/thesis/orangekit/blob/a686106e884867e829d04e38f6d26f06af051431/solidity/contracts/BitcoinSafeOwner.sol#L58
https://github.com/thesis/orangekit/blob/a686106e884867e829d04e38f6d26f06af051431/solidity/contracts/EmergencyGovernance.sol#L19
https://github.com/thesis/orangekit/blob/a686106e884867e829d04e38f6d26f06af051431/solidity/contracts/BitcoinSafeOwner.sol#L456

13

 uint8 prefix = uint8(uint256(y) & 1) + uint8(2);

 bytes20 publicKeyHash = hash160(abi.encodePacked(prefix, x));

 return

 ecrecover(signedMessage, v, r, s) ==

 publicKeyToEthereumAddress(x, y) &&

 truncatedBitcoinAddress == publicKeyHash;

Consequently, any compressed P2PKH signature can also be passed as a P2WPKH signature by

increasing the value of v by 8.

Fortunately, this currently does not lead to issues as the Gnosis Safe protects against message replays

by using nonces inside the messages. Nevertheless, this could lead to issues if the BitcoinSafeOwner

is ever used with a different multi-sig contract, that, for example, protects against replay attacks by

creating a digest of the message + signature. In that case, the message could be used once as

compressed P2PKH and once as P2WPKH .

Impact

None – no security impact.

Recommendation

We recommend adding an enum for the type of address used when creating the Safe and only allowing

signature verification of that type.

Verification Status

The Mezo team deployed the smart contracts without implementing the issues identified in this report

and stated that they intend to address them in the future.

ISSUE#9

Emit an Additional Event During Emergency Upgrades of the
BitcoinSafeOwner Contract

Location

BitcoinSafeOwner.sol#L215

Description

In case of emergency, the BitcoinSafeOwner contract can be upgraded by the governance upgrader

via the emergencyUpgradeSingleton function. As a result, the event SingletonUpgraded(address

oldSingleton, address newSingleton) is emitted, similarly to a regular upgrade by the contract

owner via the upgradeSingleton function. Emitting an additional event in case of an emergency

upgrade would allow better differentiation between governance and owner upgrades for more effective

off-chain monitoring.

Impact

None – no security impact.

Recommendation

We recommend emitting an additional event, for example, SingletonUpgradedEmergency , in the

emergencyUpgradeSingleton function.

Verification Status
Thesis Defense // Security Audit Report

Mezo

https://github.com/thesis/orangekit/blob/44355ad8dbac7df34d069fca2720c9e3f96b0ff9/solidity/contracts/BitcoinSafeOwner.sol#L215

14

The Mezo team deployed the smart contracts without implementing the issues identified in this report

and stated that they intend to address them in the future.

ISSUE#10

Avoid Using the Latest Solidity Compiler Version to Reduce
Compiler Bug Risks

Location

BitcoinSafeOwner.sol#L2

ERC1271.sol#L2

EmergencyGovernance.sol#L2

LegacyERC1271.sol#L2

OrangeKitDeployer.sol#L2

OrangeKitSafeFactory.sol#L2

Proxy.sol#L2

Description

All smart contracts in the scope of this review use the pragma solidity 0.8.25 statement. This sets

the version of the Solidity compiler, solc, to 0.8.25, which is the latest version at the time of this review.

However, new compiler versions can occasionally introduce bugs and unknown vulnerabilities, and

therefore, using the latest compiler version may pose a risk.

Impact

None – no security impact.

Recommendation

We recommend not using the latest Solidity compiler version, especially if none of the latest compiler

features are used. This reduces the risk of potentially introducing unknown compiler bugs. For example,

consider using solc version 0.8.24.

Verification Status

The Mezo team deployed the smart contracts without implementing the issues identified in this report

and stated that they intend to address them in the future.

Thesis Defense // Security Audit Report

Mezo

https://github.com/thesis/orangekit/blob/44355ad8dbac7df34d069fca2720c9e3f96b0ff9/solidity/contracts/BitcoinSafeOwner.sol#L2
https://github.com/thesis/orangekit/blob/44355ad8dbac7df34d069fca2720c9e3f96b0ff9/solidity/contracts/ERC1271.sol#L2
https://github.com/thesis/orangekit/blob/44355ad8dbac7df34d069fca2720c9e3f96b0ff9/solidity/contracts/EmergencyGovernance.sol#L2
https://github.com/thesis/orangekit/blob/44355ad8dbac7df34d069fca2720c9e3f96b0ff9/solidity/contracts/LegacyERC1271.sol#L2
https://github.com/thesis/orangekit/blob/44355ad8dbac7df34d069fca2720c9e3f96b0ff9/solidity/contracts/OrangeKitDeployer.sol#L2
https://github.com/thesis/orangekit/blob/44355ad8dbac7df34d069fca2720c9e3f96b0ff9/solidity/contracts/OrangeKitSafeFactory.sol#L2
https://github.com/thesis/orangekit/blob/44355ad8dbac7df34d069fca2720c9e3f96b0ff9/solidity/contracts/Proxy.sol#L2

15

ISSUE#11

No Protection Against Outdated Version Upgrade

Location

BitcoinSafeOwner.sol#L152

Description

The BitcoinSafeOwner smart contract allows upgrades to include new functionalities or remove

vulnerabilities. To protect the upgrading process against signature replay attacks, i.e., redeploying

previous contract versions, each message includes the domain separator that includes the version

number. As long as the version number increases at each upgrade, the signature can never be replayed.

Unfortunately, besides code comments pointing out the necessity to strictly increase the version, there

are no explicit checks in the code that enforce this. The code only checks that the new initializer

function is called with a function value, but no check is done to verify that the version number has

increased.

Impact

None – no security impact.

Recommendation

There are two ways to mitigate this issue:

Hash mapping: The more gas-intensive way would be to implement an additional mapping of

keccak256(versionString) => bool . At the end of the setup function, it must be checked

that the hash of the new version is not already contained in that mapping, reverting otherwise. If

the version is indeed new, it is added to the mapping, and the upgrade succeeds. This way, the

version formatted as a string can stay, but this comes at the cost of increased gas costs.

Numerical version number: The less gas-intensive way of securing users against accidentally

upgrading to an old version is to use numerical version numbers. This can be done by replacing

the version number string with an uint256 . In this case, the function can easily check if the

new version number is higher than the old one and revert otherwise.

Verification Status

The Mezo team deployed the smart contracts without implementing the issues identified in this report

and stated that they intend to address them in the future.

Thesis Defense // Security Audit Report

Mezo

https://github.com/thesis/orangekit/blob/a686106e884867e829d04e38f6d26f06af051431/solidity/contracts/BitcoinSafeOwner.sol#L152

16

Severity Rating Definitions

At Thesis Defense, we utilize the Immunefi Vulnerability Severity Classification System - v2.3.

Severity Definition

Manipulation of governance voting result deviating from voted

outcome and resulting in a direct change from intended effect of

original results

Direct theft of any user funds, whether at-rest or in-motion, other

than unclaimed yield

Direct theft of any user NFTs, whether at-rest or in-motion, other

than unclaimed royalties

Permanent freezing of funds

Permanent freezing of NFTs

Unauthorized minting of NFTs

Predictable or manipulable RNG that results in abuse of the

principal or NFT

Unintended alteration of what the NFT represents (e.g. token URI,

payload, artistic content)

Protocol insolvency

Theft of unclaimed yield

Theft of unclaimed royalties

Permanent freezing of unclaimed yield

Permanent freezing of unclaimed royalties

Temporary freezing of funds

Temporary freezing NFTs

Smart contract unable to operate due to lack of token funds

Enabling/disabling notifications

Griefing (e.g. no profit motive for an attacker, but damage to the

users or the protocol)

Theft of gas

Unbounded gas consumption

Contract fails to deliver promised returns, but doesn’t lose value

We make note of issues of no severity that reflect best practice

recommendations or opportunities for optimization, including, but

not limited to, gas optimization, the divergence from standard

coding practices, code readability issues, the incorrect use of

dependencies, insufficient test coverage, or the absence of

documentation or code comments.

Appendix A

Section_5.0

Thesis Defense // Security Audit Report

Mezo

https://immunefi.com/immunefi-vulnerability-severity-classification-system-v2-3/

17

Thesis Defense Disclaimer

Thesis Defense conducts its security audits and other services provided based on agreed-upon and

specific scopes of work (SOWs) with our Customers. The analysis provided in our reports is based solely

on the information available and the state of the systems at the time of review. While Thesis Defense

strives to provide thorough and accurate analysis, our reports do not constitute a guarantee of the

project’s security and should not be interpreted as assurances of error-free or risk-free project

operations. It is imperative to acknowledge that all technological evaluations are inherently subject to

risks and uncertainties due to the emergent nature of cryptographic technologies.

Our reports are not intended to be utilized as financial, investment, legal, tax, or regulatory advice, nor

should they be perceived as an endorsement of any particular technology or project. No third party

should rely on these reports for the purpose of making investment decisions or consider them as a

guarantee of project security.

Links to external websites and references to third-party information within our reports are provided

solely for the user’s convenience. Thesis Defense does not control, endorse, or assume responsibility for

the content or privacy practices of any linked external sites. Users should exercise caution and

independently verify any information obtained from third-party sources.

The contents of our reports, including methodologies, data analysis, and conclusions, are the proprietary

intellectual property of Thesis Defense and are provided exclusively for the specified use of our

Customers. Unauthorized disclosure, reproduction, or distribution of this material is strictly prohibited

unless explicitly authorized by Thesis Defense. Thesis Defense does not assume any obligation to

update the information contained within our reports post-publication, nor do we owe a duty to any third

party by virtue of making these analyses available.

Appendix B

Section_6.0

Thesis Defense // Security Audit Report

Mezo

	Mezo
	Security Audit Report
	Mezo
	Mezo Smart Contracts
	Mezo
	Mezo

	Table of Contents
	Mezo
	Mezo

	About Thesis Defense
	1
Scope
	Technical Scope
	Documentation
	Reference:
	Mezo

	2
Executive Summary
	Schedule
	Overview
	Threat Model
	Security by Design
	Secure Implementation
	Mezo

	Use of Dependencies
	Tests
	Project Documentation
	Mezo

	3
Key Findings Table
	Mezo

	4
Findings
	The BitcoinSafeOwner and OrangeKitSafeFactory Contracts can be Upgraded with a Non-Contract Address Resulting in a Non-Functional Proxy
	Location
	Description
	Impact
	Recommendation
	Verification Status
	Mezo

	Two-Step Ownership Transfer is Recommended
	Location
	Description
	Impact
	Recommendation
	Verification Status

	Rename the EmergencyUpgradesDisabled Error
	Location
	Description
	Mezo
	Impact
	Recommendation
	Verification Status

	Private and Internal Functions Do Not Adhere to the Solidity Style Guide
	Location
	Description
	Impact
	Recommendation
	Verification Status
	Mezo

	Comment Includes Spelling Issue
	Location
	Description
	Impact
	Recommendation
	Verification Status

	Missing NatSpec Return Value Documentation
	Location
	Description
	Impact
	Recommendation
	Mezo
	Verification Status

	Add Indexing to Events With Multiple Parameters
	Location
	Description
	Impact
	Recommendation
	Verification Status

	Missing Derived Address Prefix Allows Users to Pass Compressed P2PKH Signatures as P2WPKH Signatures
	Location
	Description
	Mezo
	Impact
	Recommendation
	Verification Status

	Emit an Additional Event During Emergency Upgrades of the BitcoinSafeOwner Contract
	Location
	Description
	Impact
	Recommendation
	Verification Status
	Mezo

	Avoid Using the Latest Solidity Compiler Version to Reduce Compiler Bug Risks
	Location
	Description
	Impact
	Recommendation
	Verification Status
	Mezo

	No Protection Against Outdated Version Upgrade
	Location
	Description
	Impact
	Recommendation
	Verification Status
	Mezo

	5
Appendix A
	Severity Rating Definitions
	Mezo

	6
Appendix B
	Thesis Defense Disclaimer

