
Mezo
Portal Smart Contracts

Initial Report // March 08, 2024

Final Report // March 14, 2024

Security
Audit Report

Team Members

Ahmad Jawid Jamiulahmadi // Security Auditor

Mukesh Jaiswal // Security Auditor

Bashir Abu-Amr // Head of Delivery

2

Table of Contents

41.0 Scope
1.1 Technical Scope

1.2 Documentation

52.0 Executive Summary
2.1 Schedule

2.2 Overview

2.3 Threat Model

2.4 Security by Design

2.5 Secure Implementation

2.6 Use of Dependencies

2.7 Tests

2.8 Project Documentation

73.0 Key Findings Table

84.0 Findings
4.1 BitcoinDepositor Might Fail to Finalize Some Deposits

4.2 Optimistic Pause of Bridge (Out-of-Scope)

4.3 Lack of a Two-Step Process for Ownership Change

4.4 Update Code Comments to Reflect the Implementation

4.5 Check the Sanity of Lock Interval Parameters When Setting and minLockPeriod maxLockPeriod

4.6 Prevent Adding a Supported Token With AbilityNone

4.7 Use Latest Open Zeppelin Library Implementation

4.8 Pin and Lock Pragma

4.9 Implement 0 Address Check

4.10 Prevent Resetting the depositInfo.unlockAt

Thesis Defense // Security Audit Report

Mezo

3

4.11 Check for Equality When Setting and minLockPeriod maxLockPeriod

155.0 Appendix A
5.1 Severity Rating Definitions

166.0 Appendix B
6.1 Thesis Defense Disclaimer

Thesis Defense // Security Audit Report

Mezo

4

Thesis Defense serves as the auditing services arm within Thesis, Inc., the venture studio behind tBTC,

Fold, Taho, Etcher, and Mezo. Our team of security auditors have carried out hundreds of security audits

for decentralized systems across a number of technologies including smart contracts, wallets and

browser extensions, bridges, node implementations, cryptographic protocols, and dApps. We offer our

services within a variety of ecosystems including Bitcoin, Ethereum + EVMs, Stacks, Cosmos / Cosmos

SDK, NEAR and more.

Thesis Defense will employ the Thesis Defense Audit Approach and Audit Process to the in scope

service. In the event that certain processes and methodologies are not applicable to the in scope

services, we will indicate as such in individual audit or design review SOWs. In addition, Thesis Defense

provides clear guidance on successful Security Audit Preparation.

Technical Scope

Mezo Portal

Repository: https://github.com/thesis/mezo-portal/tree/main/solidity

Audit Commit: 39a312c36a9e1abd5a7f3d982fad2b5ed452c8eb

Verification Commit: 0000ff5c322edeb69b18072c7cd2455b8afc8bf2

Files in Scope:

Portal.sol

BitcoinDepositor.sol

tBTC v2

Repository: https://github.com/keep-network/tbtc-v2/tree/main

Audit Commit: 9e047d11703415e1a1844a64b4985a181570fcdd

File in Scope:

AbstractTBTCDepositor.sol

Documentation

Mezo Security Audit Document

Mezo Release 1 Specification Document

tBTC Repository Documentation

About esis Defense

Scope

Section_1.0

Thesis Defense // Security Audit Report

Mezo

https://thesis.co/defense
https://thesis.co/defense#team
https://medium.com/thesis-defense/thesis-defense-audit-approach-75949aab90fb
https://medium.com/thesis-defense/security-audit-process-what-to-expect-when-youre-getting-a-thesis-defense-security-audit-3845b82bb027
https://medium.com/thesis-defense/maximizing-security-audit-success-a-comprehensive-guide-to-audit-preparation-16d43b09715d
https://github.com/thesis/mezo-portal/tree/main/solidity
https://github.com/keep-network/tbtc-v2/tree/main
https://coda.io/d/Mezo_d_vIDNPK008/Internal-security-audit_suQky#_lu8y4
https://coda.io/d/Mezo_d_vIDNPK008/Release-1-Stoker_suYGz#_luPrn
https://github.com/keep-network/tbtc-v2/blob/main/docs/rfc/rfc-11.adoc#22-implementation

5

Schedule

This security audit was conducted from March 4, 2024 to March 8, 2024 by 2 senior security auditors for

a total of 2 person-weeks.

Overview

Thesis Defense conducted a manual code review of Mezo’s Portal Smart Contracts implementation.

The Mezo Portal smart contracts are intended to allow BTC and tBTC holders to deposit and lock tokens

in order to earn points. These points will be used to determine airdrops from the Mezo Blockchain

mainnet. The smart contracts are intended to be integrated with a frontend interface and the tBTC

bridge, which were considered out of scope for this audit.

Threat Model

For this review, our team considered a threat model whereby the smart contracts assume all external

components as untrusted. For those components that are out of scope for this review, we considered

the components to be untrusted, but functioning as intended. The Mezo Portal smart contracts are

designed to be integrated with the tBTC v2 bridge. We assumed to tBTC the bridge behaves as expected.

The smart contracts are designed to be integrated with a user interface which we considered untrusted.

Furthermore, we assume that the governance of the Portal smart contracts is sufficiently decentralized

and not malicious.

Security by Design

We identified issues in some design elements of the smart contracts. We found that the

BitcoinDepositor smart contract does not check that the user selected locking period specified in

the extra data section of the Bitcoin script is in range, which could make the user unable to withdraw

their tokens from the protocol (Issue 1). We recommend a solution in the smart contract.

We also found that the smart contracts do not implement a 2-step process for transferring the smart

contract ownership address (Issue 3).

In looking at the out-of-scope tBTC bridge implementation, to have a more precise understanding of the

smart contracts in scope, we discovered an unlikely but possible condition in the tBTC bridge where

users would be unable to make deposits. We recommend that the user interface alert users of the

current status of the bridge (Issue 2).

In our audit, our team also noted a lock period entered as non-integer weeks (4.5 or 5.5 weeks), the

deposit interval is rounded down. Although this is intended behavior, we recommend clarifying this to

the users.

Secure Implementation

We conducted an in-depth examination and manual review of the files in scope and found them

implemented in adherence to best practices.

Executive Summary

Section_2.0

Thesis Defense // Security Audit Report

Mezo

6

Use of Dependencies

The project uses an OpenZeppelin library whose version is not the most recent. We recommend using

the most recent version that includes up to date security fixes (Issue 7).

Tests

There is sufficient testing implemented, which covers most of the functionality of the Portal and

BitcoinDepositor smart contracts.

Project Documentation

The files are well commented and adhering to NatSpec, but there are some instances of code comments

that should be updated to reflect the implementation more accurately (Issue 4).

Thesis Defense // Security Audit Report

Mezo

7

Issues Severity Status

ISSUE #1 BitcoinDepositor Might Fail to Finalize Some

Deposits

ISSUE #2 Optimistic Pause of Bridge (Out-of-Scope)

ISSUE #3 Lack of a Two-Step Process for Ownership Change

ISSUE #4 Update Code Comments to Reflect the

Implementation

ISSUE #5 Check the Sanity of Lock Interval Parameters When

Setting minLockPeriod and maxLockPeriod

ISSUE #6 Prevent Adding a Supported Token With None

Ability

ISSUE #7 Use Latest Open Zeppelin Library Implementation

ISSUE #8 Pin and Lock Pragma

ISSUE #9 Implement 0 Address Check

ISSUE #10 Prevent Resetting the depositInfo.unlockAt

ISSUE #11 Check for Equality When Setting minLockPeriod

and maxLockPeriod

Severity definitions can be found in Appendix A

Key Findings Table

Section_3.0

Thesis Defense // Security Audit Report

Mezo

8

We describe the security issues identified during the security audit, along with their potential impact.

We also note areas for improvement and optimizations in accordance with best practices. This includes

recommendations to mitigate or remediate the issues we identify, in addition to their status before and

after the fix verification.

ISSUE#1

BitcoinDepositor Might Fail to Finalize Some Deposits

Location

BitcoinDepositor.sol#L258-L263

Description

The finalizeDeposit function in the BitcoinDepositor smart contract finalizes tBTC deposits

revealed to the tBTC bridge, and deposits them on behalf of the actual depositor to the Portal smart

contract. The Bitcoin transaction token, which is a P2(W)SH Bitcoin script, includes the deposit owner

address and deposit lock time in seconds in the depositor-extra-data section of the token.

Deposits made to the Portal smart contract can be locked for a user specified period which must be

into a specific range, i.e. more than minLockPeriod and less than maxLockPeriod . Deposits with a

locking period less than the current minimum locking period and more than the current maximum

locking period will be disallowed and the transaction will be reverted.

Therefore, if the locking period specified in the depositor-extra-data section in the P2(W)SH Bitcoin

script is not in the specific range, the BitcoinDepositor smart contract will not be able to finalize the

deposit in the finalizeDeposit function since the transaction is reverted due to a call to the

depositFor function in the Portal smart contract which prevents deposits with a lockingPeriod

less than the current minimum locking period or more than the current maximum locking period if the

lockingPeriod is not zero.

Impact

Since the finalizeDeposit function in the BitcoinDepositor smart contract is always reverted

due to the incorrect locking period, the user’s deposit will be stuck in the BitcoinDepositor smart

contract.

Recommendation

Resolving this issue requires careful consideration of potential security risks and complexity that can be

introduced with a specific solution. However, we can recommend the following solutions: Before sending

the depositFor transaction to the Portal smart contract, in the finalizeDeposit function in the

BitcoinDepositor smart contract, check if the lockingPeriod provided is within the range of the

minimum locking period and the maximum locking period, and if not:

Transfer the minted tBTC tokens directly to the deposit owner, or

Deposit tokens to the Portal smart contract without locking them (deposit with zero locking

period), or

Deposit tokens to the Portal smart contract with the current maximum or minimum locking

period.

Findings

Section_4.0

Thesis Defense // Security Audit Report

Mezo

https://github.com/thesis/mezo-portal/blob/39a312c36a9e1abd5a7f3d982fad2b5ed452c8eb/solidity/contracts/BitcoinDepositor.sol#L258-L263

9

Verification Status

This issue can be mitigated in the Mezo interface dApp, which was out of scope for this security audit.

ISSUE#2

Optimistic Pause of Bridge (Out-of-Scope)

Location

BitcoinDepositor.sol#L183

Description

The tBTC bridge handles user deposits through optimistic minting and sweeping. Optimistic minting

allows the minting of tBTC prior to the TBTCVault receiving the Bank smart contract balance. Two

permissioned sets, Minters and Guardians, operate in a 1-of-n mode. Minters monitor revealed deposits

and can request the minting of tBTC, with any single Minter capable of initiating this action. A delay,

known as optimisticMintingDelay , occurs between the Minter’s request and the actual minting of

tBTC. Within this delay period, any Guardian has the authority to cancel the minting process.

In Sweeping the bridge active wallet periodically signs a transaction that unlocks all of the valid,

revealed deposits above the dust threshold, combines them into a single UTXO, and the balances of

depositors in the Bank smart contract are increased when the Simple Payment Verification sweep

proof is submitted to the bridge.

As a result, there are conditions when tBTC minting is not allowed:

When the optimistic minting is paused, Minters will not be able to put in a request for an

optimistic minting of tBTC

When the wallet is in the state MovingFunds , the wallet is expected to move outstanding funds

to another wallet. The wallet can still fulfill pending redemption requests, although new

redemption requests and new deposit reveals are not accepted.

As a result, when optimistic minting is paused and the wallet is in the state MovingFunds , the user will

not be able to reveal their deposited BTC to the BitcoinDepositor smart contract.

Impact

While the likelihood of such a situation occurring is minimal, it is still possible. If it does happen, users

will have the option to claim their deposited BTC after the expiration of the lock time interval. This

effectively renders the user’s assets inaccessible for the duration of the lock period, and the user is

unable to earn points.

Recommendation

We recommend that users are alerted in the interface about the paused status of the bridge and wallet

status before allowing any deposit transactions.

Verification Status

The Mezo team stated that the Mezo interface dApp will restrict deposits when the tBTC bridge is in

optimistic pause mode.

Thesis Defense // Security Audit Report

Mezo

https://github.com/thesis/mezo-portal/blob/9aa1acb6b97068ff963962c192de057901e0bbc4/solidity/contracts/BitcoinDepositor.sol#L183

10

ISSUE#3

Lack of a Two-Step Process for Ownership Change

Location

Portal.sol#L9

Description

The Portal smart contract uses OpenZeppelin’s OwnableUpgradeable library for the transfer of

ownership of a smart contract from one owner address to another. This library does not implement a

two-step ownership transfer.

Impact

A two-step process for ownership transfer significantly reduces the probability of incorrectly

transferring ownership of a smart contract which would result in the permanent loss of control of the

smart contract.

Recommendation

We recommend implementing a Two-Step process for ownership change. We recommend using

OpenZeppelin’s Ownable2StepUpgradeable library for this purpose.

ISSUE#4

Update Code Comments to Reflect the Implementation

Location

Portal.sol#L305

Portal.sol#L315

Description

There are comprehensive code comments in the smart contracts that adhere to NatSpec guidelines.

However, our team found instances of an inaccurate code comment.

Impact

None – no security impact.

Recommendation

We recommend updating the referenced code comments.

Thesis Defense // Security Audit Report

Mezo

https://github.com/thesis/mezo-portal/blob/39a312c36a9e1abd5a7f3d982fad2b5ed452c8eb/solidity/contracts/Portal.sol#L9
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/master/contracts/access/Ownable2StepUpgradeable.sol
https://github.com/thesis/mezo-portal/blob/39a312c36a9e1abd5a7f3d982fad2b5ed452c8eb/solidity/contracts/Portal.sol#L305
https://github.com/thesis/mezo-portal/blob/39a312c36a9e1abd5a7f3d982fad2b5ed452c8eb/solidity/contracts/Portal.sol#L315

11

ISSUE#5

Check the Sanity of Lock Interval Parameters When Setting
minLockPeriod and maxLockPeriod

Location

Portal.sol#L171-L182

Portal.sol#L189-L200

Description

The setMinLockPeriod and setMaxLockPeriod functions in the Portal smart contract do not check

if the newly set locking period is normalized to weeks. Additionally, the setMinLockPeriod function

currently lacks appropriate input validation for a minimum lock period of one week. The absence of a

check allows the lock duration interval to be set to values that are not normalized.

Without input validation, the minimum lock period can be set to any value that is less than 1 week, which

is not consistent with the intended functionality and could lead to unexpected outcomes.

Impact

None – no security impact.

Recommendation

We recommend that the locking periods supplied in the aforementioned functions are checked for

normalization. We also recommend implementing a sanity check on the minimum lock duration

parameter to enforce the minimum one-week lock interval.

ISSUE#6

Prevent Adding a Supported Token With None Ability

Location

Portal.sol#L149-L166

Description

The addSupportedToken function in the Portal smart contract is used to add a new token to the list of

supported tokens. A new supported token should be added with a token ability of Deposit or

DepositAndLock . However, this function allows adding a supported token with the None token

ability.

Impact

None – no security impact.

Recommendation

We recommend adding to a check to prevent adding a supported token with the None token ability.
Thesis Defense // Security Audit Report

Mezo

https://github.com/thesis/mezo-portal/blob/39a312c36a9e1abd5a7f3d982fad2b5ed452c8eb/solidity/contracts/Portal.sol#L171-L182
https://github.com/thesis/mezo-portal/blob/39a312c36a9e1abd5a7f3d982fad2b5ed452c8eb/solidity/contracts/Portal.sol#L189-L200
https://github.com/thesis/mezo-portal/blob/39a312c36a9e1abd5a7f3d982fad2b5ed452c8eb/solidity/contracts/Portal.sol#L149-L166

12

ISSUE#7

Use Latest Open Zeppelin Library Implementation

Location

package.json#L48

Description

The current version of the smart contracts relies on a prior release of the OpenZeppelin library, wherein

an issue with Base64 encoding exists. While this problem does not currently impact the functionality of

the Portal smart contracts, upgrading the library helps the contract mitigates potential security

issues related to the known issue as the project evolves over time.

Impact

None – no security impact.

Recommendation

We recommend that an upgrade be made to the Open Zeppelin library version to 5.0.2.

ISSUE#8

Pin and Lock Pragma

Location

https://github.com/thesis/mezo-portal/contracts

Description

When using the pragma directive in Solidity, it is essential to specify the exact version of the Solidity

compiler that your smart contract is compatible with. This practice, known as locking the pragma,

ensures that your contract is compiled and executed as intended, avoiding potential issues caused by

compiler version differences.

Impact

None – no security impact.

Recommendation

We recommend specifying the most recent, exact version of the Solidity compiler.

Thesis Defense // Security Audit Report

Mezo

https://github.com/thesis/mezo-portal/blob/39a312c36a9e1abd5a7f3d982fad2b5ed452c8eb/solidity/package.json#L48
https://github.com/OpenZeppelin/openzeppelin-contracts/security/advisories/GHSA-9vx6-7xxf-x967
https://github.com/thesis/mezo-portal/tree/39a312c36a9e1abd5a7f3d982fad2b5ed452c8eb/solidity/contracts

13

ISSUE#9

Implement 0 Address Check

Location

https://github.com/thesis/mezo-

portal/blob/39a312c36a9e1abd5a7f3d982fad2b5ed452c8eb/solidity/contracts/Portal.sol#L380

Description

In the location referenced above, a zero address check is missing validating the correctness

depositOwner address, thereby preventing an incorrectly set value. Zero address checks are essential

when an address is the receiver of a token or value.

Impact

None – no security impact.

Recommendation

We recommend adding a zero address check for depositOwner in the _depositFor function.

ISSUE#10

Prevent Resetting the depositInfo.unlockAt

Location

Portal.sol#L361-L369

Description

The referenced if condition in the lock function inside the Portal smart contract does not revert

if the newly provided unlocking time is the current unlocking time hence resetting it with the same value.

Impact

None – no security impact.

Recommendation

We recommend preventing the resetting of the depositInfo.unlockAt by adding an equality check in

the revert condition referenced above.

Thesis Defense // Security Audit Report

Mezo

https://github.com/thesis/mezo-portal/blob/39a312c36a9e1abd5a7f3d982fad2b5ed452c8eb/solidity/contracts/Portal.sol#L380
https://github.com/thesis/mezo-portal/blob/39a312c36a9e1abd5a7f3d982fad2b5ed452c8eb/solidity/contracts/Portal.sol#L361-L369

14

ISSUE#11

Check for Equality When Setting minLockPeriod and
maxLockPeriod

Location

Portal.sol#L171-L178

Portal.sol#L190-L196

Description

When setting minLockPeriod and maxLockPeriod in the setMinLockPeriod and

setMaxLockPeriod functions respectively in the Portal smart contract, minLockPeriod can be

set to maxLockPeriod and vice versa since the referenced revert conditions in both functions don’t

check for equality of minLockPeriod and maxLockPeriod to revert consequently. This might result

in unexpected behavior.

Impact

None – no security impact.

Recommendation

We recommend that a check for equality in the referenced functions be also implemented to prevent

unexpected behavior.

Thesis Defense // Security Audit Report

Mezo

https://github.com/thesis/mezo-portal/blob/39a312c36a9e1abd5a7f3d982fad2b5ed452c8eb/solidity/contracts/Portal.sol#L171-L178
https://github.com/thesis/mezo-portal/blob/39a312c36a9e1abd5a7f3d982fad2b5ed452c8eb/solidity/contracts/Portal.sol#L190-L196

15

Severity Rating Definitions

At Thesis Defense, we utilize the Immunefi Vulnerability Severity Classification System - v2.3.

Severity Definition

Manipulation of governance voting result deviating from voted

outcome and resulting in a direct change from intended effect of

original results

Direct theft of any user funds, whether at-rest or in-motion, other

than unclaimed yield

Direct theft of any user NFTs, whether at-rest or in-motion, other

than unclaimed royalties

Permanent freezing of funds

Permanent freezing of NFTs

Unauthorized minting of NFTs

Predictable or manipulable RNG that results in abuse of the

principal or NFT

Unintended alteration of what the NFT represents (e.g. token URI,

payload, artistic content)

Protocol insolvency

Theft of unclaimed yield

Theft of unclaimed royalties

Permanent freezing of unclaimed yield

Permanent freezing of unclaimed royalties

Temporary freezing of funds

Temporary freezing NFTs

Smart contract unable to operate due to lack of token funds

Enabling/disabling notifications

Griefing (e.g. no profit motive for an attacker, but damage to the

users or the protocol)

Theft of gas

Unbounded gas consumption

Contract fails to deliver promised returns, but doesn’t lose value

We make note of issues of no severity that reflect best practice

recommendations or opportunities for optimization, including, but

not limited to, gas optimization, the divergence from standard

coding practices, code readability issues, the incorrect use of

dependencies, insufficient test coverage, or the absence of

documentation or code comments.

Appendix A

Section_5.0

Thesis Defense // Security Audit Report

Mezo

https://immunefi.com/immunefi-vulnerability-severity-classification-system-v2-3/

16

Thesis Defense Disclaimer

Thesis Defense conducts its security audits and other services provided based on agreed-upon and

specific scopes of work (SOWs) with our Customers. The analysis provided in our reports is based solely

on the information available and the state of the systems at the time of review. While Thesis Defense

strives to provide thorough and accurate analysis, our reports do not constitute a guarantee of the

project’s security and should not be interpreted as assurances of error-free or risk-free project

operations. It is imperative to acknowledge that all technological evaluations are inherently subject to

risks and uncertainties due to the emergent nature of cryptographic technologies.

Our reports are not intended to be utilized as financial, investment, legal, tax, or regulatory advice, nor

should they be perceived as an endorsement of any particular technology or project. No third party

should rely on these reports for the purpose of making investment decisions or consider them as a

guarantee of project security.

Links to external websites and references to third-party information within our reports are provided

solely for the user’s convenience. Thesis Defense does not control, endorse, or assume responsibility for

the content or privacy practices of any linked external sites. Users should exercise caution and

independently verify any information obtained from third-party sources.

The contents of our reports, including methodologies, data analysis, and conclusions, are the proprietary

intellectual property of Thesis Defense and are provided exclusively for the specified use of our

Customers. Unauthorized disclosure, reproduction, or distribution of this material is strictly prohibited

unless explicitly authorized by Thesis Defense. Thesis Defense does not assume any obligation to

update the information contained within our reports post-publication, nor do we owe a duty to any third

party by virtue of making these analyses available.

Appendix B

Section_6.0

Thesis Defense // Security Audit Report

Mezo

	Mezo
	Security Audit Report
	Mezo
	Portal Smart Contracts
	Mezo
	Mezo

	Table of Contents
	Mezo
	Mezo

	About Thesis Defense
	1
Scope
	Technical Scope
	Mezo Portal
	tBTC v2

	Documentation
	Mezo

	2
Executive Summary
	Schedule
	Overview
	Threat Model
	Security by Design
	Secure Implementation
	Mezo

	Use of Dependencies
	Tests
	Project Documentation
	Mezo

	3
Key Findings Table
	Mezo

	4
Findings
	BitcoinDepositor Might Fail to Finalize Some Deposits
	Location
	Description
	Impact
	Recommendation
	Mezo
	Verification Status

	Optimistic Pause of Bridge (Out-of-Scope)
	Location
	Description
	Impact
	Recommendation
	Verification Status
	Mezo

	Lack of a Two-Step Process for Ownership Change
	Location
	Description
	Impact
	Recommendation

	Update Code Comments to Reflect the Implementation
	Location
	Description
	Impact
	Recommendation
	Mezo

	Check the Sanity of Lock Interval Parameters When Setting minLockPeriod and maxLockPeriod
	Location
	Description
	Impact
	Recommendation

	Prevent Adding a Supported Token With None Ability
	Location
	Description
	Impact
	Recommendation
	Mezo

	Use Latest Open Zeppelin Library Implementation
	Location
	Description
	Impact
	Recommendation

	Pin and Lock Pragma
	Location
	Description
	Impact
	Recommendation
	Mezo

	Implement 0 Address Check
	Location
	Description
	Impact
	Recommendation

	Prevent Resetting the depositInfo.unlockAt
	Location
	Description
	Impact
	Recommendation
	Mezo

	Check for Equality When Setting minLockPeriod and maxLockPeriod
	Location
	Description
	Impact
	Recommendation
	Mezo

	5
Appendix A
	Severity Rating Definitions
	Mezo

	6
Appendix B
	Thesis Defense Disclaimer

